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single field adiabatic mode    (massless)ζ

multiple field adiabatic + isocurvatures

“multi field” light isocurvatures (m<<H)

quasi-single field isocurvatures m ～ H

- well motivated by model building

- phenomenologically interesting
(string inspired, supergravity based, ... )

(characteristic signatures in primordial perturbations)
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- systematic expansions in fluctuations and derivatives
- simplification in the dynamics of Goldstone boson π
- relations between physics and non-Gaussianities are clear!
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# general action of quasi-single field inflation

relevant dof = three physical modes of graviton
+ additional massive scalar field σ

schematically written as S = Sgrav + Sσ + Smix

large non-Gaussianitis from mixings    and   1β1 β2
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FIG. 1: Cij ’s for fixed rs = cσ/cπ. The dots are numerical results for rs = 0.1 (red), 0.3 (orange), 1 (yellow), 3 (green), and 10
(blue). The curves are analytic results for rs = 1 obtained in the next subsection.

2. A class of analytically calculable models: cπ = cσ

Let us then consider the case rs = cσ/cπ = 1. For this class of models, we can analytically calculate the integrals Iij ’s
by extending the results in [20]. We first introduce a function A(!, ν, x) defined by

A(!, ν, x) = x− 1
2+#eixH(1)

ν (x) . (118)

In terms of A, Ai can be written as

A1(x) = A(0, ν, x) , A2(x) = A(1, ν − 1, x) , A3(x) = iA(1, ν, x) , (119)

The dots are numerical results for rs = 0.1 (red), 0.3 (orange), 1 (yellow), 3 (green), and 10 (blue).

The curve is an analytic result for rs = 1.

Power spectrum

※     does not vanish even in the heavy mass limitC22

β̃2π̇σ̇
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�πk1πk2πk3� ∝ κ−3/2−νk−6
ν =

�
9/4−m2

σ/H2

- original models of quasi-single field inflation

- for general mixing and cubic couplings

① scaling does not depend on details of mixing

② determined only from cubic interaction in the diagram
×

× ×

π

π π

3pt functions
8/10



23

three point vertices momentum dependence

π̇3, π̇
(∂iπ)2

a2
κ−1k−6

π̇2σ, π̇σ̇, π̇σ2, π̇σσ̇, π̇σ̇2, π̈σσ̇,

σ3, σ2σ̇, σσ̇2, σ
(∂iσ)2

a2
, σ̇3, σ̇

(∂iσ)2

a2






κ−3/2−νk−6 for mσ <
3
2
H

κ−3/2k−6 sin[iν log κ + δν ] for mσ >
3
2
H

π̇
∂iπ∂iσ

a2
κ−2k−6

(∂iπ)2

a2
σ,

(∂iπ)2

a2
σ̇,

∂iπ∂iσ

a2
σ,

∂iπ∂iσ

a2
σ̇





κ−3/2−νk−6 for mσ <

√
2H

κ−2k−6 for mσ >
√

2H

π̇
(∂iσ)2

a2





κ−1/2−νk−6 for mσ <

√
2H

κ−1k−6 for mσ >
√

2H

Here we note that although the contribution from the π̇
(∂iπ)2

a2
vertex seems to be proportional to κ−2k−6 apparently,

explicit calculations show that this kind of leading contribution vanishes and the three point functions start from
terms proportional to κ−1k−6.

As we have seen, the momentum dependence of scalar three point functions in the squeezed limit has robust
information about mass of σ and three point vertices.

VI. SUMMARY AND DISCUSSION

In this paper we developed the effective field theory approach to quasi-single field inflation. We constructed the
most generic action in the unitary gauge for quasi-single field inflation based on the unbroken time-dependent spatial
diffeomorphism. We then constructed the action for the Goldstone boson by the Stückelberg method and discussed
its decoupling regime, where interactions between Goldstone boson and graviton become irrelevant inside the horizon.
As a first step, we considered two classes of models: the constant turning trajectory and sharp turning trajectory....

APPENDIX A: ASYMPTOTIC BEHAVIOR OF D(!, ν, x)

In this appendix we derive the asymptotic behavior (122) in the limit x → ∞ of the function D(', ν, x):

D(', ν x) =
2νx

1
2+#−νΓ(ν)

iπ( 1
2 + ' − ν) 2F2

(1
2
− ν,

1
2

+ ' − ν;
3
2

+ ' − ν, 1 − 2ν; 2ix
)

+ e−iπν 2νx
1
2+#+νΓ(−ν)

iπ( 1
2 + ' + ν) 2F2

(1
2

+ ν,
1
2

+ ' + ν;
3
2

+ ' + ν, 1 + 2ν; 2ix
)

. (A1)

We use the following asymptotic expansion of hypergeometric functions:

2F2(a1, a2; b1, b2; z) =
Γ(b1)Γ(b2)
Γ(a1)Γ(a2)

ezza1+a2−b1−b2

∞∑

k=0

z−k

+
Γ(b1)Γ(b2)Γ(a2 − a1)

Γ(a2)Γ(b1 − a1)Γ(b2 − a1)
(−z)−a1

3F1(a1, a1 − b1 + 1, a1 − b2 + 1; a1 − a2 + 1;−1/z)

+
Γ(b1)Γ(b2)Γ(a1 − a2)

Γ(a1)Γ(b1 − a2)Γ(b2 − a2)
(−z)−a2

3F1(a2, a2 − b1 + 1, a2 − b2 + 1; a2 − a1 + 1;−1/z) .

(A2)

ν =
�

9/4−m2
σ/H2 0 < ν < 3/2 or ν = pure imaginary

non-trivial scaling in the squeezed limit when mixing is relevant!
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# summary
applied EFT approach to QSI
- systematic expansions in fluctuations and derivatives
- simplification of action for π in decoupling regime
- relation between physics & non-Gaussianities is clear

calculated power spectrum for constant mixing
discussed scaling of 3-pt functions in squeezed limit
- sensitive to # of fields and their mass

also discussed effects of heavy particles, sharp turning

# prospects
full non-Gaussianities, detectability, ...
EFT for sugra based inflation,
more on sharp turning, ...

10/10
Summary and prospects
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