

Kazuyuki Sugimura, JGRG 22(2012)111204

"Non-gaussian bubbles from tunneling in the inflationary era"

RESCEU SYMPOSIUM ON

GENERAL RELATIVITY AND GRAVITATION

JGRG 22

November 12-16 2012

Koshiba Hall, The University of Tokyo, Hongo, Tokyo, Japan

$f_{\rm NL}(\theta,\phi) \equiv 3 \left\langle (\delta T(\theta,\phi)/\bar{T})^3 \right\rangle / \left\langle (\delta T/\bar{T})^2 \right\rangle^2$

TP Kazuyuki Sugimura (YITP, Kyoto University) KAWA INSTITUTE FOR HEORETICAL PHYSICS D. Yamauchi and M. Sasaki, (EPL 100 (2012) 29004)

Non-Gaussian bubble

30

$f_{\rm NL}(\theta,\phi) \equiv 3 \left\langle (\delta T(\theta,\phi)/\bar{T})^3 \right\rangle / \left\langle (\delta T/\bar{T})^2 \right\rangle^2$

TP Kazuyuki Sugimura (YITP, Kyoto University) HEORETICAL PHYSICS D. Yamauchi and <u>M. Sasaki,</u> (EPL 100 (2012) 29004) 60th celebration of the birthday, congratulations!!

Non-Gaussian bubble

45

30

Introductions

Inflation

http://journalofcosmology.com

(flatness, homogeneity, power spectrum)

- good consistency with observation
- What is the physical origin of inflation?

String landscape (Susskind, 2003)

- attempt to explain the origin of inflation with string theory
- many scalar fields & local potential minima

potential for scalar fields

quantum tunneling

bubble nucleation

Bubble nucleation (= quantum tunneling) (= 1^{st} order phase trainsition)

- tunneling between local minima
- scalar-field bubble is nucleated during inflation

Bubbles in the sky

After inflation

- all scalar fields, including bubbles, decay
- but, signature of bubbles may be seen as some bubble feature in the sky

Non-Gaussianity f_{NL} (Komatsu and Spergel, 2001)

$$\phi(x) = \phi_{\rm L}(x) + f_{\rm NL} \left(\phi_{\rm L}^2(x) - \left\langle \phi_{\rm L}^2 \right\rangle \right)$$

ex-bubble region

last scattering surface

(in comoving coordinate)

observer

high-f_{NI}

low-

CMB sky map

- f_{NL} is one way to parameterize deviation from Gaussian statistics
- small for the simplest inflation model (Maldacena 2002) $(\phi_{
 m L}$: Gaussian variable)
- suitable for detection of deviation from the simplest model

Non-Gaussian bubbles

- bubble signature may be seen in non-Gaissianity
- f_{NL} can be different for each CMB sky patch
- we show how it happens using a toy model

Toy Model

(Curvaton scenario: Curvaton affects neither slow-roll inflaiton nor bubble nucleation. But it decays later than inflaton and tunneling field. Then, its energy density becomes relatively higher and it creates curvature pert. when it decays.)

Bubble nucleation during slow-roll inflation

Slow-roll inflation is not affected by bubble nucleation

Bubble nucleates at one moment of slow roll inflation (for simplicity, we consider single nucleation case)

Curvaton evolution in the universe with a bubble

• Original potential for curvaton ϕ has interaction with tunneling field $V(\phi) = \frac{m^2}{2}\phi^2 + V_{\text{int}}(\sigma, \phi)$

Effective potential for ϕ in the universe with bubble of σ $V_{\text{int}}^{(\text{eff})}(\phi; x) := V_{\text{int}}(\bar{\sigma}(x), \phi)$ substituiting background bubble

□ Non-linear self interaction is assumed to vanish at false vacuum

$$V_{\text{int}}(\sigma,\phi) = \lambda(\sigma)\phi^3 \qquad (\lambda(\sigma_{\text{F}}) = 0)$$

Non-Gaussianity is generated only inside bubble

Method

How to calculate 3pt function in the universe with a bubble

lacksquare Background bubble of σ is described by CDL instanton

(Coleman and De Luccia(CDL), 1980)

- imaginary time evolution describes nucleation process
- real time evolution describes expansion afterwards
- \Box skewness of ϕ on bubble background

$$\left\langle \phi^{3}(x)\right\rangle = \left\langle 0\left|P\left(\phi^{3}(x)\exp\left[-\frac{i}{\hbar}\int_{C_{1}+C_{2}}dt\int d^{3}\mathbf{x}\sqrt{-g}V_{\mathrm{int}}^{(\mathrm{eff})}(\phi(x);x)\right]\right)\right|0\right\rangle$$

- extension of in-in formalism to the case with bubble
- in-in time path consists of both imaginary and real time

How fluctuation evolves

 $\phi(x)$

curvaton flucutuation

 $\zeta(x)$

Sachs-Wolfe effect

ex-bubble region

CMB anisotropies

last scattering surface

 $\delta T(\theta, \varphi)$

 \Box CMB skewness: $\left< \delta T^3(\theta, \varphi) \right>$

- skewness of ϕ becomes skewness of δ T
- observer sees high skewness spot

(= Non-Gaussian bubble)

high skewness

Result and Conclusion

non-Gaussian bubble

□ We have shown that <u>a bubble-shaped high-skewness spot</u> in CMB anisotropies may be generated if a bubble is nucleated during inflationary era by using a toy model.

Usual analysis using statistically homogeneous templates will miss non-Gaussian bubbles even if they exist. However, you may find them by making special analysis targeting them. (future work)

□ If you find non-Gaussian bubbles in near-future observations, it might be the first observational signature of string theory!

Appendix

$$r_{\phi} = 0.1, \; |\boldsymbol{x}_0| = r_* = 2, \; Ht_{\mathrm{e}} = 50$$

(parameters are chosen so that curvaton doesn't affect power spectrum, which is assumed to be generated by inflaton's fluctuation)

Parameter dependence of f_{NL} at the center of bubble

$$f_{\rm NL}^{\rm (cen)} \approx \frac{3 \times 10^{-4} \,\lambda \, r_{\phi}^3 \,\sin^3(HR_{\rm W})}{A_{\zeta}^4 \,\exp\left(\left(\frac{m}{H}\right)^2 H t_{\rm e}\right)} \,\left(\frac{H}{m}\right)^6 \left(\frac{H}{\phi_0}\right)^3.$$

Graphical description of in-in formalism with bubble

in-in time path for in-in formalism with bubble L-region C-region bubble nucleation E-region Penrose-like diagram of the bubble nucleating universe

reheating

$$\left\langle \delta\phi(x_1)\delta\phi(x_2)\cdots\delta\phi(x_N)\right\rangle = \frac{\left\langle 0 \left| P\delta\phi(x_1)\delta\phi(x_2)\cdots\delta\phi(x_N)e^{i\int_{C\times\Sigma_t}dtd^3\mathbf{x}\mathcal{L}_I} \right| 0 \right\rangle}{\left\langle 0 \left| Pe^{i\int_{C\times\Sigma_t}dtd^3\mathbf{x}\mathcal{L}_I} \right| 0 \right\rangle}$$

