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Bubble nucleation during slow-roll 
inflation�
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Curvaton evolution in the universe 
with a bubble�
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How to calculate 3pt function 
in the universe with a bubble�
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From curvaton fluctuation to δT�
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RTSel parameters�
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Non-Gaussian bubbles in the sky

soon as the finite resolution of observations or renormal-
ization of the theory is taken into account.

Non-Gaussian bubbles in the sky. – Now we study
signatures of our model in the CMB anisotropy. In our
model, the evolution of the universe after the inflaton
and the tunneling field decay, is exactly the same as the
ordinary curvaton scenario [12]. Here, we estimate the
curvature perturbation after the curvaton decay by using
the sudden-decay approximation [13].
After inflation the curvaton starts to roll down the

potential and undergoes damped oscillations when the
Hubble parameter becomes smaller than m. The curvaton
energy density behaves like a pressureless matter during
this stage of damped oscillations. At the time t= tcurv
when the curvatons decay, the energy density of the
universe consists of that of radiation ρr generated from
the decay of the inflatons and that of the curvaton ρφ.
The contribution of each component to the total curva-
ture perturbation of the universe may be conveniently
expressed in terms of ζr and ζφ, which are defined as
the curvature perturbations on the uniform energy density
slices of the radiation and the curvaton, respectively.
It is known that each of them is separately conserved

on superhorizon scales at t < tcurv. As for ζφ, it may
be evaluated by the energy density fluctuations on
the uniform inflaton field slice at the end of inflation,
δρφ/ρφ, as
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where te is the time at the end of inflation.
After the curvaton decay, the total curvature pertur-

bation on the slices of uniform total energy density, ζ, is
conserved on superhorizon scales. It is given by

ζ = (1− rφ)ζr + rφζφ , (13)

where rφ = 3ρφ/(4ρr +3ρφ)|tcurv .
For the moment, we ignore the contribution from δφ2/φ20

and concentrate on the skewness generated by the nonlin-
ear interaction with the tunneling field. Then we have

〈ζ3(r)〉 ≈ r3φ〈ζ3φ(r, te)〉 ≈
8

27
r3φ
〈δφ3(r, te)〉
φ30

, (14)

where 〈δφ3〉 is given by eq. (9). An important feature is
that the skewness of the curvature perturbation depends
on the position of the bubble due to the spatial dependence
of 〈δφ3〉.
To proceed, we focus only on the large angular scale

CMB anisotropy for which the Sachs-Wolfe effect domi-
nates. In this regime, the CMB temperature anisotropy
can be written in terms of the curvature perturbation as
(δT/T )(n̂) = (1/5) ζ(x0+ r∗n̂, t∗), where x0 is the comov-
ing position of the observer measured from the bubble
center, n̂= (sin θ cosϕ, sin θ sinϕ, cos θ) is the directional

Fig. 6: (Color online) Non-Gaussianity map in the CMB sky,
for the model parameters given in the text. Colors correspond
to the values of fNL.

cosine of the sky seen by the observer, r∗ is the comov-
ing distance from the observer to the last scattering
surface and t∗ is the time at the last scattering surface.
Then, defining the non-Gaussianity parameter fNL as
(3/5)fNL(n̂)≡ 〈ζ3(x0+ r∗n̂, t∗)〉/〈ζ2〉2, we have

fNL(n̂)≈
40r3φ
81〈ζ2〉2

〈δφ3(|x0+ r∗n̂|, t∗)〉
φ30

. (15)

One explicitly sees that the dependence on the position of
the bubble center breaks the statistical isotropy.
For completeness, let us discuss the additional contri-

butions to fNL which we have ignored. The contribution
of ζr to non-Gaussianity is known to be very small as
long as the vacuum is in the Bunch-Davies vacuum [8].
A deviation from the Bunch-Davies vacuum may give rise
to a non-zero non-Gaussianity. It is expected to be statis-
tically homogeneous and isotropic but scale-dependent (in
the Fourier space). It may be detected by the templates
of the equilateral or orthogonal types. The contribution
from the part of ζφ quadratic in δφ/φ0 gives rise to a local
type non-Gaussianity which is again statistically homoge-
neous and isotropic, and which may be detected by the
squeezed-type templates.
This contribution from the nonlinearity of δφ/φ0 in ζφ

may be estimated as follows. Roughly speaking, 〈δφ4〉 ≈
〈δφ2〉2 ≈ (H/2π)4 for m/H& 1, and the contribution to
〈ζ3φ〉 is about (4/9)(H/2πφ0)4. Thus, the condition that
fNL is dominated by the nonlinear interaction with the
bubble is given as
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3H2H

8π2m2φ0
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This is satisfied in an example we compute below.
For illustration, we plot fNL(n̂) in the CMB sky in

fig. 6. The parameters are m/H = 0.3, HRW = 0.2π
H/φ0 = 0.001 λ= 0.005, rφ = 0.1, |x0|= r∗ = 2, Hte = 50.
For the variance 〈ζ2〉 we simply impose the observa-
tional result, 〈ζ2〉=A2ζ ≡ 6.25× 10−10 [7], assuming

that it is dominated by ζr (see footnote 3). Since

3In this case, it may not be appropriate to call φ a curvaton,
since it never dominates the curvature perturbations. Nevertheless,
we call it a curvaton for notational convenience.
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It is known that each of them is separately conserved

on superhorizon scales at t < tcurv. As for ζφ, it may
be evaluated by the energy density fluctuations on
the uniform inflaton field slice at the end of inflation,
δρφ/ρφ, as

ζφ =
1

3

δρφ
ρφ

∣

∣

∣

∣

te

=
1

3

(

2
δφ

φ0
+
δφ2

φ20

)
∣

∣

∣

∣

te

, (12)

where te is the time at the end of inflation.
After the curvaton decay, the total curvature pertur-

bation on the slices of uniform total energy density, ζ, is
conserved on superhorizon scales. It is given by

ζ = (1− rφ)ζr + rφζφ , (13)

where rφ = 3ρφ/(4ρr +3ρφ)|tcurv .
For the moment, we ignore the contribution from δφ2/φ20

and concentrate on the skewness generated by the nonlin-
ear interaction with the tunneling field. Then we have

〈ζ3(r)〉 ≈ r3φ〈ζ3φ(r, te)〉 ≈
8

27
r3φ
〈δφ3(r, te)〉
φ30

, (14)

where 〈δφ3〉 is given by eq. (9). An important feature is
that the skewness of the curvature perturbation depends
on the position of the bubble due to the spatial dependence
of 〈δφ3〉.
To proceed, we focus only on the large angular scale

CMB anisotropy for which the Sachs-Wolfe effect domi-
nates. In this regime, the CMB temperature anisotropy
can be written in terms of the curvature perturbation as
(δT/T )(n̂) = (1/5) ζ(x0+ r∗n̂, t∗), where x0 is the comov-
ing position of the observer measured from the bubble
center, n̂= (sin θ cosϕ, sin θ sinϕ, cos θ) is the directional

Fig. 6: (Color online) Non-Gaussianity map in the CMB sky,
for the model parameters given in the text. Colors correspond
to the values of fNL.

cosine of the sky seen by the observer, r∗ is the comov-
ing distance from the observer to the last scattering
surface and t∗ is the time at the last scattering surface.
Then, defining the non-Gaussianity parameter fNL as
(3/5)fNL(n̂)≡ 〈ζ3(x0+ r∗n̂, t∗)〉/〈ζ2〉2, we have

fNL(n̂)≈
40r3φ
81〈ζ2〉2

〈δφ3(|x0+ r∗n̂|, t∗)〉
φ30

. (15)

One explicitly sees that the dependence on the position of
the bubble center breaks the statistical isotropy.
For completeness, let us discuss the additional contri-

butions to fNL which we have ignored. The contribution
of ζr to non-Gaussianity is known to be very small as
long as the vacuum is in the Bunch-Davies vacuum [8].
A deviation from the Bunch-Davies vacuum may give rise
to a non-zero non-Gaussianity. It is expected to be statis-
tically homogeneous and isotropic but scale-dependent (in
the Fourier space). It may be detected by the templates
of the equilateral or orthogonal types. The contribution
from the part of ζφ quadratic in δφ/φ0 gives rise to a local
type non-Gaussianity which is again statistically homoge-
neous and isotropic, and which may be detected by the
squeezed-type templates.
This contribution from the nonlinearity of δφ/φ0 in ζφ

may be estimated as follows. Roughly speaking, 〈δφ4〉 ≈
〈δφ2〉2 ≈ (H/2π)4 for m/H& 1, and the contribution to
〈ζ3φ〉 is about (4/9)(H/2πφ0)4. Thus, the condition that
fNL is dominated by the nonlinear interaction with the
bubble is given as

4

9

(

H

2πφ0

)4

&
32π

27
λ sin3(HRW)

(

3H2H

8π2m2φ0

)3

F (te). (16)

This is satisfied in an example we compute below.
For illustration, we plot fNL(n̂) in the CMB sky in

fig. 6. The parameters are m/H = 0.3, HRW = 0.2π
H/φ0 = 0.001 λ= 0.005, rφ = 0.1, |x0|= r∗ = 2, Hte = 50.
For the variance 〈ζ2〉 we simply impose the observa-
tional result, 〈ζ2〉=A2ζ ≡ 6.25× 10−10 [7], assuming

that it is dominated by ζr (see footnote 3). Since

3In this case, it may not be appropriate to call φ a curvaton,
since it never dominates the curvature perturbations. Nevertheless,
we call it a curvaton for notational convenience.
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with radius !W(0) (≈RW for HRW" 1) expands to the
Hubble horizon scale within one or two e-folds of time,
∆t∼H−1, and then expands comovingly as !W(t)∼ a(t).
It should be noted that models with multiple nucleation

are possible. If those bubbles do not interact with each
other, we can take into account the effect of all bubbles
by summing up the effect of each bubble. Hereafter, we
consider a model with a single bubble for simplicity.

Non-Gaussianity generation. –

Effective action on instanton background. Here we
calculate the skewness in the curvaton fluctuations on the
single-bubble background. We consider the Lagrangian for
the curvaton φ as

Lφ =−
√
−g
(

1

2
gµν∂µφ∂νφ+

m2

2
φ2+Vint(σ,φ)

)

, (5)

where m2"H2. We expand the above by setting φ=
φ0+ δφ, where φ0 is a homogeneous classical part and
δφ is a quantum fluctuation. We assume that φ0 is
approximately constant during inflation, and we concen-
trate on the evolution of δφ. Further, for simplicity, we
assume Vint(σ,φ) is non-vanishing only on the wall. Hence
we approximate it as Vint(σ,φ) = λφ3H δ(χ−HRW) with
λH =

∫ π
0 dχλ̃(σ̄(χ)). Then the Lagrangian for δφ is given

as Lδφ =L0+LI , where L0 is the free part and LI is the
interaction part,

L0 = −
√
−g
(

1

2
gµν∂µδφ ∂νδφ +

1

2

(

m2+ δm2
)

δφ2
)

,

LI = −
√
−g λHδ (χ−HRW) δφ3, (6)

where δm2 ≡ 6λHφ0δ(χ−HRW).
Quantum field theory on the instanton background.

To calculate the quantum fluctuations on the instanton
background, we extend the in-in formalism to Euclidean
spacetime, which we call the tunneling in-in formalism.
This formalism is based on the WKB analysis of a
tunneling wave function for free theory [15,16] to the case
with nonlinear interactions. A detailed derivation will be
given elsewhere [17]2.
The tunneling in-in formalism tells us that the N -point

function of δφ is given by

〈

δφ(x1)δφ(x2) · · · δφ(xN )
〉

=

〈

0
∣

∣

∣
P δφ(x1)δφ(x2) · · · δφ(xN )ei

∫
C×Σt

dtd3xLI
∣

∣

∣
0
〉

〈

0
∣

∣

∣
Pei

∫
C×Σt

dtd3xLI
∣

∣

∣
0
〉 , (7)

where the tunneling in-in path C and t= const surfaces
Σt are as shown in fig. 2. The first half of C (the arrowed

2A similar formalism is used in [18]. However, the motivation
of [18] was to show a theoretical relation called the FLRW-CFT
correspondence and hence it is quite different from ours.

Σ

Σ

Fig. 2: (Color online) The same as fig. 1, but with all domains
of integration given in eq. (7).

green line in fig. 2) goes from one end of the Euclidean
region to future infinity in the Lorentzian region through
the bubble nucleation surface. The second half of C (the
arrowed blue line in fig. 2) goes back from future infinity
through the nucleation surface to the other end of the
Euclidean region. The slicing C ×Σt covers the whole
Euclidean region and the future half of the Lorentzian
region twice. In the Lorentzian region any Σt is a Cauchy
surface. The operator P in eq. (7) is the path-ordering
operator. In the Lorentzian region, P reduces to the time-
ordering and anti-time-ordering operators T and T̄ on
the first and second halves of C, respectively. It should
be noted that eq. (7) is independent of the choice of
coordinates.
Equation (7) is evaluated in the same way as in the usual

perturbation theory. After expanding the interaction part
perturbatively, operators are transformed to products of
the free correlation function G(x, x′) = 〈0|δφ(x)δφ(x′)|0〉
using Wick’s theorem. We note that G(x, x′) is not the
correlation function for the Bunch-Davies vacuum due
to the non-trivial nature of L0. It may be obtained by
studying the “evolution” of the mode functions in the
Euclidean space [3].
While G(x, x′) is a single-valued function when x and

x′ are in space-like separation, when they are in time-
like separation, T or T̄ in the expression singles out
the Feynman or anti-Feynman propagator, respectively.
A branch of G(x, x′), when x′ is in the Euclidean region,
is determined by analyticity on x′ along C. It may be
noted that by this way of choosing branches the expression
in eq. (7) is equivalent to that obtained by analytical
continuation of Euclidean quantum field theory [18], and
O(4)(O(3,1))-symmetry of the result is guaranteed.

Skewness from bubble nucleation. Now we evaluate
the skewness 〈δφ3(x)〉 by substituting Lδφ in eq. (6) to
the tunneling in-in formula in eq. (7). In the following
calculations, we approximate G(x, x′) by that of the
Bunch-Davies vacuum, by neglecting corrections due to
the non-trivial part of L0 in eq. (6). This effect may
affect the value of the skewness, but since it only induces
a statistically homogeneous non-Gaussianity, we simply
ignore it here.
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which being responsible for the curvature perturbation of
the universe (that is, for the formation of the large-scale
structure) and the other for quantum tunneling via a CDL
instanton, induces an anisotropic non-Gaussianity. To be
specific, we introduce an inflaton field Φ that realizes slow-
roll inflation, a tunneling field σ that governs the tunneling
dynamics, and a curvaton field φ that contributes to the
curvature perturbation of the universe [12,13].
The inflaton dominates the energy density of the

universe during inflation but rapidly decays to radiation
after the end of inflation. On the other hand, the energy
density of the curvaton field is negligible during inflation
but its decay is delayed after inflation so that it gradually
begins to dominate the universe.
Approximating the universe during inflation by an exact

de Sitter spacetime, the inflaton behaves as a cosmic
clock and determines an appropriate time-slicing, namely,
a spatially flat time-slicing of the de Sitter spacetime. In
this setup, assuming that the energy scale associated with
the tunneling field is much smaller than the energy scale of
inflation, the bubble nucleation can be well described by
a single-field CDL instanton with no backreaction to the
geometry, that is, on the exact de Sitter background [3,5].
The curvaton φ is affected by the background bubble

through a coupling with the tunneling field σ. For
simplicity and definiteness, we consider a potential of
the form, Vint(σ,φ) = λ̃(σ)φ3. Assuming that Vint(σ,φ) is
non-vanishing only at or inside the bubble wall, we expect
that φ may have a spatially localized, bubble-shaped
non-Gaussianity due to the background bubble-shaped
configuration of σ. This leads to an anisotropic, bubble-
shaped skewness of the CMB temperature anisotropy.
This paper is organized as follows. We first illustrate the

background spacetime and the configuration of the bubble.
Next, we briefly review a useful formalism for computing
the equal-time N -point functions, the tunneling in-in
formalism, and calculate the skewness of the curvaton
fluctuations. Then we demonstrate that a sky map of an
anisotropic non-Gaussian parameter fNL in our model.
Finally, we end with a few concluding remarks.

Background evolution. – Let us start from a brief
description of de Sitter spacetime [3,14]. A Lorentzian
4-dimensional de Sitter spacetime is O(4,1)-symmetric,
which is obtained by analytical continuation of an O(5)-
symmetric 4-dimensional Euclidean sphere, as illustrated
in fig. 1. Among various coordinatization of the spacetime,
the uniform tunneling field slicing is most appropriate to
see O(4)(O(3,1))-symmetry of the CDL instanton, which
corresponds to the time-slicing inside the bubble that
describes a spatially homogeneous and isotropic open
universe. For brevity, let us call it open slicing. Open
slicing in the C-region in fig. 1 is a time-like slicing, and
the metric in the C-region may be expressed as

ds2 =
1

H2

(

dχ2+sin2 χ
(

−dτ2+cosh2 τ dΩ22
)

)

, (1)

Fig. 1: (Color online) Penrose-like diagram of the bubble
nucleating universe, where a half of the Euclidean region
(bottom) and the Lorentzian region after bubble nucleation
(top) are shown. The blue dot-dashed lines are surfaces of
constant cosmic time, the green solid lines those of uniform
tunneling field, and the red solid line the location of the bubble
wall.

where −∞< τ <∞ and 0! χ! π, and dΩ22 is the metric
on the unit 2-sphere. Theses coordinates can be extended
to the other regions of the spacetime by analytical
continuation:

τ = rR− iπ/2 = rL− iπ/2 = irE,

χ = itR =−itL+π= tE, (2)

where (tR, rR), (tL, rL) and (tE, rE) are the coordinates for
the R, L, and E regions, respectively, in fig. 1.
The metric for the flat time-slicing is

ds2 =−dt2+ a2(t)
(

dr2+ r2dΩ22
)

; a(t) =H−1eHt. (3)

As mentioned in the introduction, the t= const slices are
on which the inflaton is uniform, and give the cosmic rest
frame of our universe.
Let us briefly describe the bubble configuration of σ

under the thin-wall approximation. The O(4)-symmetric
CDL instanton for σ can be described as a function of χ,
which we denote by σ̄(χ) hereafter. We denote the wall
radius by RW. Hence

σ̄(χ) =

{

σT for 0! χ<HRW,

σF for HRW < χ! π.
(4)

Though σ̄ is homogeneous in the R or L regions, the
physical bubble radius 'W(t) on flat slices increases
as time goes on. We take the origin r= t= 0 of
the flat slicing metric (3) to be the center of the
bubble at the time of nucleation. Then the relations
between the coordinates in the metrics (1) and (3) are
cosχ= coshHt− (1/2)eHtr2 and sinχ cosh τ = eHtr,

which gives 'W(t) = a(t)
√

1+ e−2Ht− 2e−Ht cos HRW.
As seen from this expression, a bubble once nucleated
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〈δφ2〉 ≈ (H/2π)2 when m/H$ 1, this assumption is
justified if (2rφ/3)2(H/2πφ0)2$A2ζ , which is marginally
satisfied in the above example.
The typical value of fNL at the center of the bubble

when the parameters satisfy the above conditions is
estimated as

f (cen)NL ≈
3×10−4 λ r3φ sin

3(HRW)

A4ζ exp
(

(mH )
2Hte

)

(

H

m

)6(H

φ0

)3

. (17)

This gives f (cen)NL ≈ 15 for the parameters given above and
agrees with the result in fig. 6 within the errors shown in
fig. 5. From this estimation, we find that the resultant fNL
is rather sensitive to the values of m/H and H/φ0. It is
enhanced for smaller m/H and larger H/φ0.

Conclusion. – In this paper, we calculated the skew-
ness in the CMB temperature anisotropy in a model with
bubble nucleation during inflation, motivated by the string
theory landscape. We considered bubble nucleation in
the curvaton scenario of inflation in which the curvaton
vacuum fluctuations are affected by the bubble nucleation
through interaction with the tunneling field. The calcu-
lation was done by extending the in-in formalism to the
instanton background [17]. We found that there can be
spatially localized, bubble-shaped skewness which is large
inside the bubble.
As far as we know, bubble-shaped non-Gaussianities

have not been studied carefully yet in observation. So
it seems interesting to look for such a non-Gaussianity
already in the current observational data. As suggested
by Byrnes et al. [19], a technique based on the needlet
formalism [20], which has an ability to test non-
Gaussianity in selected regions of the sky, may be very
useful for this purpose. As pointed out by Komatsu
and Spergel [9], the bispectrum, corresponding to the
3-point function, contains much more information than
the single value of the skewness. Thus, analysis beyond
skewness may improve the observability of bubble-shaped
non-Gaussianities. We hope to come back to this issue in
a future publication.
Since the string theory landscape gives a strong moti-

vation for inflation models with bubble nucleation, stud-
ies of such inflation models may be regarded as testing
string theory using the universe as a laboratory. In any
case, if any signature of bubble nucleation during infla-
tion is found in observation, it gives a huge impact on the
physics of the early universe, including string theory.
Finally, we note that in the evaluation of the skewness

we neglected the effect of deviations from the Bunch-
Davies vacuum. This may affect the details of our result,
though generic features are expected to remain the same.
This effect can be evaluated by studying the evolution of
the mode function on the instanton background [3]. We
plan to come back to this issue in the near future.
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Fig. 2: Same figure as Fig. 1, but with all domain of integration
in eq. (4). P orders operators based on the order of argument
t of C.

where v ≡
√

9/4 − m2/H2. Z(x′, x) is defined as
Z(x′, x) = cos(Hd(x′, x)), where d(x′, x) is geodesic dis-
tance between x′ and x, and Z > 1, Z = 1 and Z < 1,
correspond to timelike, null, and spacelike separation, re-
spectively. As was mentioned before, branch of G(x′, x) =
G(Z(x′, x)) should be specified for Z > 1 and it can
be done by adding small imaginary part ±iε to Z as
G(Z(x′, x) ± iε).

Perturbative expansion of eq. (4) in λ is allowed when
contribution from higher order term is smaller than lower
order. This is the case when λ # (H/m)3, which comes
from rough estimation of

∫
d4xLI ∼ λ(H/m)3 using φ ∼

H2/m and
∫

d4x
√
−gλ̃ ∼ λ/H3, and we assume this con-

dition in the followings.
Finally, we get

〈
δφ3(x1)

〉
= −iH3

∫

C
dτ

∫ π

0
dχ

∫
dΩ

× sin3 χ sinh2 τλHδ(χ − HRW )G3(x1, x). (6)

where C : −iπ
2 → 0 − iε → ∞ → 0 + iε → iπ

2 as shown in
Fig. 3. Among the domain of integral, τ ∈ (−iπ/2, iπ/2)
and τ ∈ (0 ± iε,∞) corresponds to E- and C-region, re-
spectively. Integration in R- or L-region is not needed,
since LI in eq. (3) vanishes in those region. Small imag-
inary part when τ ∈ (0 ± iε,∞) play a role in choosing
Feynman and anti-Feynman propagator on the first and
second half of integration, respectively, by adding a small
imaginary part to Z(x1, x).

Evaluation of eq. (6) is straightforward in a sense that it
is just c-number integration, but the evaluation gets much
easier if we use O(4)-symmetric property of N -point func-
tion in the tunneling in-in formalism. Just for illustration,
we assume that x1 is in R-region, though the same argu-
ment is valid when x1 is in C- or L-region. In this case,
calculation of 〈δφ3(x1)〉 for points with rR1 = 0 where in-
tegration by χ and Ω in eq. (6) is trivial, is enough since
the value at any other point in R-region can be known
from O(4)-symmetry.

After integration by χ andΩ, integration by τ along C is
left. As in Fig. 3, since C originally goes beside a singular-
ity and breaks numerical evaluation, integral is evaluated

Re τ

Im τ

0
×

τ

i π/2

- i π/2

C
C’

Fig. 3: The structure of integrand and integration path in
eq. (6). Wavy line: branch cut, doted line: original path C,
solid line: detoured path for numerical calculation C′.

numerically along a new path C ′ by detouring C without
crossing branch cut or poles of the integrand. The result-
ing 〈δφ3〉 is first given in open slice coordinates, but the
expression for 〈δφ3〉 on flat slices is easily obtained from
the coordinate transformation between open slices and flat
slices.

Finally, we obtain 〈δφ3〉 on a flat slice. We plot 〈δφ3(r)〉
in Fig. 4 with parameters Ht = 50,HRW = 0.2π and
m/H = 0.1, 0.3, 0.5, normalized by the value at the
center 〈δφ3(0)〉 ≡ F (m/H) × λ(H/m)6(H/2π)3. Sup-
pression factor at the center of bubble F (m/H) is plot-
ted in Fig. 5, where F (m/H) is well approximated as
F (m/H) ∼ 2e−Htm2/H2

. You can see that the skew-
ness is large inside the bubble and gets decreased as get-
ting away from the bubble, and its radial dependence is
stronger when m/H is larger. Those dependencies can be
understood from the fact that when m/H is small G(x′, x)
asymptotically proportional to |1 − Z|−m2/(3H2). Appar-
ent divergent behavior near the bubble wall is unphysical,
since when we coarse grain δφ in finite volume this diver-
gence vanishes. This bubble-shaped distribution of 〈δφ3〉
is a consequence of interactions with a background nucle-
ated bubble.

Non-Gaussian Bubbles in the Sky. – Here, we
discuss observational feature of our toy model. In our toy
model, evolution of the universe after the first reheating,
when the inflaton and the tunneling field decays, is exactly
the same as the ordinary curvaton scenario. Thus, δφ at
the first reheating affect δT/T in the CMB sky in usual
manner [13, 14], and bubble-shaped 〈δφ3(r)〉 obtained in
the previous section will be transformed to bubble-shaped
skewness in CMB anisotropies 〈(δT (θ,ϕ)/T )3〉 in the end.

Let us briefly see how δφ is transformed to δT/T . φ’s
curvature perturbation ζφ given by ζφ = 2(δφ/φ0) +
(δφ2/φ2

0), is conserved in large scale during the time be-
tween the first and the second reheating. At the sec-
ond reheating, ζφ affects ζ according to a formula ζ =
(1 − rφ)ζr + rζφ, where rφ = 3ρφ/(4ρr + 3ρφ) is relative
contribution of curvaton to the total curvature perturba-
tion, and ζr is curvature perturbation produced by the in-
flaton. After the second reheating ζ is conserved in large
scale, and in Sachs-Wolfe regime temperature anisotropies
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separated by bubble wall with radius RW . In this case,
σ̄(x) = σF when HRW < !χ ≤ π and σ̄(x) = σT when
0 ≤ !χ < HRW . Though σ̄(x) seems homogeneous in R-
or L-region coordinates, physical bubble radius rW (t) in-
creases as time goes on when we measure it on flat slices.
We take the origin of flat slice coordinates to be the cen-
ter of the bubble at the nucleation, and then the relations
between C-region coordinates and flat slice coordinates
are cos χ = coshHt − (1/2)eHtr2 and sin χ cosh τ = eHtr,
which gives rW (t) = a(t)

√
1 + e−2Ht − 2e−Ht cos HRW .

A bubble once nucleated with radius rW (0), which is ap-
proximately RW when HRW $ 1, expands to the horizon
scale in the first one e-folding, and then almost comovingly
expands as rW (t) ∼ a(t) until the first reheating when σ
decays.

Non-Gaussianity Generation. –

Effective Action on Instanton Background. In this sec-
tion, we will calculate skewness in fluctuation of the cur-
vaton δφ on the bubble nucleation background illustrated
in the previous section, and bubble-shaped skewness will
be obtained at the end. Let us start from explanation of
effective Lagrangian Lδφ which δφ effectively obeys. We
decompose φ as φ = φ0 + δφ, where φ0 is a homogeneous
classical part and δφ is quantum fluctuation. As was men-
tioned before, we assume that φ0 is approximately con-
stant during inflation, and we concentrate on the evolution
of δφ from now on. In our toy model, we consider interac-
tion potential as Vint(σ,φ) = λ̃(σ)φ3 where σ-dependent
coupling constant λ̃(σ) vanishes around σF or σT . Then,
Lδφ = L0 +LI , where L0 is free part and LI is interaction
part, is obtained by substituting a background instanton
σ̄(x) to L(φ; σ) in eq. (1). As a result, we obtain

L0 = −
√
−g

(
1
2
(∂δφ)2+

m2+ 6λHφ0δ(χ − HRW )
2

δφ2

)
,

LI = −
√
−g λHφ0δ(χ − HRW ))δφ3. (3)

where λH =
∫ π
0 dχλ̃(σ̄(χ)) and gµν is background de Sitter

spacetime metric. In eq. (3), it is obvious that Lδφ is
inhomogeneous.

QFT on Instanton Background. In this paper, we will
calculate quantum fluctuation on instanton background
using the tunneling in-in formalism, which describes evo-
lution of quantum fluctuation with interaction both dur-
ing and after tunneling. Roughly speaking, this formalism
is derived by extending WKB analysis of tunneling wave
function for free theory [16,17] to a case with interaction,
but full derivation will be shown in other place [18] and
here we just assume the resulting formula. Similar formula
is used in [19], however, the motivation of the work to show
a theoretical relation called FRW-CFT correspondence is
totally different from ours.

The tunneling in-in formalism tells us that N -point

function of δφ obeying Lφ is given by
〈
δφ(x1)δφ(x2) · · · δφ(xN )

〉

=

〈
0

∣∣∣P δφ(x1)δφ(x2) · · · δφ(xN )ei
R

C×Σt
dtd3xLI

∣∣∣ 0
〉

〈
0

∣∣∣Pei
R

C×Σt
dtd3xLI

∣∣∣ 0
〉 , (4)

where tunneling in-in path C and time constant surface Σt

is shown in Fig. 2. The first half of C(green line in Fig. 2)
goes from one end of the Euclidean region to future in-
finity in Lorentzian region through bubble nucleation sur-
face. The second half of C(blue line in Fig. 2) goes almost
reversely but reaches at the other end of the Euclidean
region. As is shown in Fig. 2, C × Σt covers whole Eu-
clidean region and Lorentzian region twice. In Lorentzian
region Σt is taken as Cauchy surface at time t. Path-
ordering operator P in eq. (4), reorders δφ(t,x)s based on
the order of t. In Lorentzian region, P plays a role of time-
ordering operator T and anti-time-ordering operator T̄ on
the first half and second half of C, respectively. It should
be noted that eq. (4) is independent of coordinate choice,
since the redefinition of Σt doesn’t change order of oper-
ators in time-like separation but these are only possible
operators which do not commute each other.

Eq. (4) is evaluated in the same way as the usual per-
turbative quantum field theory(QFT) calculation. Af-
ter expanding the expression perturbatively, operators
are transformed to products of free correlation func-
tion G(x′, x) = 〈0 |δφ(x′)δφ(x)| 0〉 using Wick’s theorem.
G(x′, x) is not correlation function for Bunch-Davies vac-
uum due to the non-trivial background, and is obtained
by analysis of the evolution of mode functions [8]. While
G(x′, x) is single-valued function when x′ and x are in
space-like separation, when they are in time-like separa-
tion T or T̄ in the expression specifies one of branches and
Feynman or anti-Feynman propagator are chosen, respec-
tively. A branch of G(x′, x), when x is in Euclidean region,
is determined by analyticity on x along C. It should be
noted that by this way of choosing branch eq. (4) is equiva-
lent to the expression obtained by analytical continuation
of Euclidean QFT [19], and O(4)(O(3.1)) symmetry of the
result is guaranteed.

Skewness from Bubble Nucleation. Here we evaluate
skewness 〈δφ3〉 by substituting Lδφ in eq. (3) to the tunnel-
ing in-in formula in eq. (4). In the following calculations,
we use G(x′, x) of Bunch-Davies vacuum for simplicity in-
stead of G(x′, x) obtained by analysis of mode functions,
because it is expected that the modification of G(x′, x)
doesn’t change generic feature of 〈δφ3〉, though it might
change a detail. For example, it is known that the devi-
ation of G(x′, x) from that of Bunch-Davies vacuum may
induce orthogonal type non-Gaussianity [20]. G(x′, x) of
Bunch-Davies vacuum is given by

G(x′, x)=
H2( 1

4 − v2)
16π cos πv

2F1

[
3
2 + v, 3

2 − v
2 ;

1+Z(x′, x)
2

]
, (5)
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0 ≤ !χ < HRW . Though σ̄(x) seems homogeneous in R-
or L-region coordinates, physical bubble radius rW (t) in-
creases as time goes on when we measure it on flat slices.
We take the origin of flat slice coordinates to be the cen-
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A bubble once nucleated with radius rW (0), which is ap-
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scale in the first one e-folding, and then almost comovingly
expands as rW (t) ∼ a(t) until the first reheating when σ
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vaton δφ on the bubble nucleation background illustrated
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spacetime metric. In eq. (3), it is obvious that Lδφ is
inhomogeneous.

QFT on Instanton Background. In this paper, we will
calculate quantum fluctuation on instanton background
using the tunneling in-in formalism, which describes evo-
lution of quantum fluctuation with interaction both dur-
ing and after tunneling. Roughly speaking, this formalism
is derived by extending WKB analysis of tunneling wave
function for free theory [16,17] to a case with interaction,
but full derivation will be shown in other place [18] and
here we just assume the resulting formula. Similar formula
is used in [19], however, the motivation of the work to show
a theoretical relation called FRW-CFT correspondence is
totally different from ours.
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is shown in Fig. 2. The first half of C(green line in Fig. 2)
goes from one end of the Euclidean region to future in-
finity in Lorentzian region through bubble nucleation sur-
face. The second half of C(blue line in Fig. 2) goes almost
reversely but reaches at the other end of the Euclidean
region. As is shown in Fig. 2, C × Σt covers whole Eu-
clidean region and Lorentzian region twice. In Lorentzian
region Σt is taken as Cauchy surface at time t. Path-
ordering operator P in eq. (4), reorders δφ(t,x)s based on
the order of t. In Lorentzian region, P plays a role of time-
ordering operator T and anti-time-ordering operator T̄ on
the first half and second half of C, respectively. It should
be noted that eq. (4) is independent of coordinate choice,
since the redefinition of Σt doesn’t change order of oper-
ators in time-like separation but these are only possible
operators which do not commute each other.

Eq. (4) is evaluated in the same way as the usual per-
turbative quantum field theory(QFT) calculation. Af-
ter expanding the expression perturbatively, operators
are transformed to products of free correlation func-
tion G(x′, x) = 〈0 |δφ(x′)δφ(x)| 0〉 using Wick’s theorem.
G(x′, x) is not correlation function for Bunch-Davies vac-
uum due to the non-trivial background, and is obtained
by analysis of the evolution of mode functions [8]. While
G(x′, x) is single-valued function when x′ and x are in
space-like separation, when they are in time-like separa-
tion T or T̄ in the expression specifies one of branches and
Feynman or anti-Feynman propagator are chosen, respec-
tively. A branch of G(x′, x), when x is in Euclidean region,
is determined by analyticity on x along C. It should be
noted that by this way of choosing branch eq. (4) is equiva-
lent to the expression obtained by analytical continuation
of Euclidean QFT [19], and O(4)(O(3.1)) symmetry of the
result is guaranteed.

Skewness from Bubble Nucleation. Here we evaluate
skewness 〈δφ3〉 by substituting Lδφ in eq. (3) to the tunnel-
ing in-in formula in eq. (4). In the following calculations,
we use G(x′, x) of Bunch-Davies vacuum for simplicity in-
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because it is expected that the modification of G(x′, x)
doesn’t change generic feature of 〈δφ3〉, though it might
change a detail. For example, it is known that the devi-
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Scenario and Background Evolution. – First of
all, let us briefly describe outline of the scenario in our toy
model. This model consists of three scalar fields, an infla-
ton Φ, a tunneling field σ and a curvaton φ, which play
their own roles in our scenario, as is guessed from their
name. Firstly, the inflaton Φ causes slow-roll inflation.
We assume that the energy density of Φ is much larger
than that of σ and φ and that they don’t affect slow-roll
inflation. Φ sets cosmic time in approximate de Sitter
spacetime, which corresponds to the time of flat slices of
de Sitter spacetime. Secondly, the tunneling field σ tun-
nels via bubble nucleation during slow-roll inflation by Φ
from a false vacuum σF to a true vacuum σT through po-
tential barrier around σW . We assume that energy density
of σ is much larger than that of φ and that it doesn’t affect
bubble nucleation. We also assume that slow-roll limit can
be taken where motion of Φ and deviation from de Sitter
spacetime is negligible. Then the bubble nucleation of σ
is expected to described by a CDL instanton on de Sitter
spacetime [5, 8], though tunneling on slightly non-static
background has not been fully understood yet. Thirdly,
the curvaton φ affect curvature perturbation of the uni-
verse when it decays at the second reheating, which comes
after the first reheating when Φ and σ decays. After the
second reheating, the universe evolves in the same way as
the standard cosmological model.

Then, let us briefly describe how bubble-shaped non-
Gaussianity is generated in our toy model. Lagrangian
density of φ is

L(φ; σ) = −
√
−g

(
1
2

(∂φ)2 +
m2

2
φ2 + Vint(σ,φ)

)
, (1)

where the mass m is smaller than Hubble parameter H
during inflation, and the classical motion of φ during in-
flation can be negligible. φ’s fluctuation δφ is affected by
a background bubble through a coupling with σ in the in-
teraction potential Vint(σ,φ). We assume that Vint(σ,φ)
contains non-linear self interaction term of φ which is large
only when σ ∼ σW . Then non-Gaussianity in δφ is gen-
erated with bubble-shaped statistical distribution, due to
the background bubble-shaped configuration of σ. At the
second reheating, δφ is transformed to a part of ζ in usual
manner [13,14], and ζ, which is constant outside the hori-
zon, finally becomes temperature anisotropies δT/T in the
CMB sky, where T is CMB temperature in average and
δT is deviation from it. The relation between δT/T and
ζ on the last scattering surface(LSS) of CMB is given by
the Sachs-Wolfe formula, which can be applicable except
for small scale observations. In this model, we consider
the case that powerspectrum of curvature perturbation
ζ is mainly produced by the fluctuation of Φ, but non-
Gaussian part of ζ is mainly produced by δφ. Then, the
skewness of δT/T , which also originates in the bubble-
shaped skewness of δφ, will have bubble-shaped configu-
ration. We will see this as non-Gaussian bubble in the
CMB sky. It should be noted that models with multiple

R-region

C-region

L-region

E-region

reheating

bubble nucleation

bubble wall

Fig. 1: Penrose-like diagram of bubble nucleating universe,
where a half of Euclidean region(bottom) and Lorentzian re-
gion after bubble nucleation(top) are shown. Blue dot-dashed
line: cosmic time constant surface, green line: instanton con-
stant surface, red line: bubble wall of thin-wall instanton.

bubble nucleation is possible. If those bubbles do not in-
teract each other, we can taken into account the effect of
all bubbles by summing up the effect of each bubble. In
this paper, we consider a model with one bubble nucle-
ation for simplicity.

Before moving on to the calculation of non-Gaussianity
in δφ, we would like to review σ’s tunneling described
by a CDL instanton. Let us start from a brief review of
de Sitter spacetime [15]. Lorentzian 4D-de Sitter space-
time is O(4.1)-symmetric spacetime, which is obtained by
analytical continuation of O(5)-symmetric 4D-Euclidean
sphere as illustrated in Fig. 1. Open slices is suitable to
see O(4)(O(3.1))-symmetry of CDL instanton, while time
of flat slices correspond to the cosmic time determined by
Φ’s value. Open slice coordinates in C-region (τ, χ, Ω2)
with Ω2 coordinates for S2, originally covers limited re-
gion of de Sitter spacetime shown in Fig. 1. However, this
coordinate set can be extended to the whole spacetime by
analytical continuation τ = rR + iπ/2 = rL − iπ/2 = irE

and χ = itR = −itL = tE, where (tR, rR), (tR, rR) and
(tE, rE) are coordinate set of R-, L-, and E-region in Fig. 1,
respectively. Metric written in C-region coordinates is

ds2 =
1

H2

(
dχ2 + sin2 χ

(
−dτ2 + cosh2 τdΩ2

2

))
, (2)

and those written in R-, L-, and E-region coordinates are
given by its analytical continuation. Metric written in
flat slice coordinates (t, r,Ω2) is given as ds2 = −dt2 +
a2(t)

(
dr2 + r2dΩ2

2

)
, where scale factor a(t) = H−1eHt.

With this knowledge about de Sitter spacetime, descrip-
tion of σ’s instanton σ̄(x) is very simple. From O(4)-
symmetry, σ̄(x) is described as a function of χ in all
de Sitter spacetime with the analytical continuation of
C-region coordinates. In our toy model, we consider a
thin-wall instanton whose inside and out side is strictly
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soon as the finite resolution of observations or renormal-
ization of the theory is taken into account.

Non-Gaussian bubbles in the sky. – Now we study
signatures of our model in the CMB anisotropy. In our
model, the evolution of the universe after the inflaton
and the tunneling field decay, is exactly the same as the
ordinary curvaton scenario [12]. Here, we estimate the
curvature perturbation after the curvaton decay by using
the sudden-decay approximation [13].
After inflation the curvaton starts to roll down the

potential and undergoes damped oscillations when the
Hubble parameter becomes smaller than m. The curvaton
energy density behaves like a pressureless matter during
this stage of damped oscillations. At the time t= tcurv
when the curvatons decay, the energy density of the
universe consists of that of radiation ρr generated from
the decay of the inflatons and that of the curvaton ρφ.
The contribution of each component to the total curva-
ture perturbation of the universe may be conveniently
expressed in terms of ζr and ζφ, which are defined as
the curvature perturbations on the uniform energy density
slices of the radiation and the curvaton, respectively.
It is known that each of them is separately conserved

on superhorizon scales at t < tcurv. As for ζφ, it may
be evaluated by the energy density fluctuations on
the uniform inflaton field slice at the end of inflation,
δρφ/ρφ, as

ζφ =
1

3

δρφ
ρφ

∣

∣

∣

∣

te

=
1

3

(

2
δφ

φ0
+
δφ2

φ20

)
∣

∣

∣

∣

te

, (12)

where te is the time at the end of inflation.
After the curvaton decay, the total curvature pertur-

bation on the slices of uniform total energy density, ζ, is
conserved on superhorizon scales. It is given by

ζ = (1− rφ)ζr + rφζφ , (13)

where rφ = 3ρφ/(4ρr +3ρφ)|tcurv .
For the moment, we ignore the contribution from δφ2/φ20

and concentrate on the skewness generated by the nonlin-
ear interaction with the tunneling field. Then we have

〈ζ3(r)〉 ≈ r3φ〈ζ3φ(r, te)〉 ≈
8

27
r3φ
〈δφ3(r, te)〉
φ30

, (14)

where 〈δφ3〉 is given by eq. (9). An important feature is
that the skewness of the curvature perturbation depends
on the position of the bubble due to the spatial dependence
of 〈δφ3〉.
To proceed, we focus only on the large angular scale

CMB anisotropy for which the Sachs-Wolfe effect domi-
nates. In this regime, the CMB temperature anisotropy
can be written in terms of the curvature perturbation as
(δT/T )(n̂) = (1/5) ζ(x0+ r∗n̂, t∗), where x0 is the comov-
ing position of the observer measured from the bubble
center, n̂= (sin θ cosϕ, sin θ sinϕ, cos θ) is the directional

Fig. 6: (Color online) Non-Gaussianity map in the CMB sky,
for the model parameters given in the text. Colors correspond
to the values of fNL.

cosine of the sky seen by the observer, r∗ is the comov-
ing distance from the observer to the last scattering
surface and t∗ is the time at the last scattering surface.
Then, defining the non-Gaussianity parameter fNL as
(3/5)fNL(n̂)≡ 〈ζ3(x0+ r∗n̂, t∗)〉/〈ζ2〉2, we have

fNL(n̂)≈
40r3φ
81〈ζ2〉2

〈δφ3(|x0+ r∗n̂|, t∗)〉
φ30

. (15)

One explicitly sees that the dependence on the position of
the bubble center breaks the statistical isotropy.
For completeness, let us discuss the additional contri-

butions to fNL which we have ignored. The contribution
of ζr to non-Gaussianity is known to be very small as
long as the vacuum is in the Bunch-Davies vacuum [8].
A deviation from the Bunch-Davies vacuum may give rise
to a non-zero non-Gaussianity. It is expected to be statis-
tically homogeneous and isotropic but scale-dependent (in
the Fourier space). It may be detected by the templates
of the equilateral or orthogonal types. The contribution
from the part of ζφ quadratic in δφ/φ0 gives rise to a local
type non-Gaussianity which is again statistically homoge-
neous and isotropic, and which may be detected by the
squeezed-type templates.
This contribution from the nonlinearity of δφ/φ0 in ζφ

may be estimated as follows. Roughly speaking, 〈δφ4〉 ≈
〈δφ2〉2 ≈ (H/2π)4 for m/H& 1, and the contribution to
〈ζ3φ〉 is about (4/9)(H/2πφ0)4. Thus, the condition that
fNL is dominated by the nonlinear interaction with the
bubble is given as

4

9

(

H

2πφ0

)4

&
32π

27
λ sin3(HRW)

(

3H2H

8π2m2φ0

)3

F (te). (16)

This is satisfied in an example we compute below.
For illustration, we plot fNL(n̂) in the CMB sky in

fig. 6. The parameters are m/H = 0.3, HRW = 0.2π
H/φ0 = 0.001 λ= 0.005, rφ = 0.1, |x0|= r∗ = 2, Hte = 50.
For the variance 〈ζ2〉 we simply impose the observa-
tional result, 〈ζ2〉=A2ζ ≡ 6.25× 10−10 [7], assuming

that it is dominated by ζr (see footnote 3). Since

3In this case, it may not be appropriate to call φ a curvaton,
since it never dominates the curvature perturbations. Nevertheless,
we call it a curvaton for notational convenience.
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soon as the finite resolution of observations or renormal-
ization of the theory is taken into account.

Non-Gaussian bubbles in the sky. – Now we study
signatures of our model in the CMB anisotropy. In our
model, the evolution of the universe after the inflaton
and the tunneling field decay, is exactly the same as the
ordinary curvaton scenario [12]. Here, we estimate the
curvature perturbation after the curvaton decay by using
the sudden-decay approximation [13].
After inflation the curvaton starts to roll down the

potential and undergoes damped oscillations when the
Hubble parameter becomes smaller than m. The curvaton
energy density behaves like a pressureless matter during
this stage of damped oscillations. At the time t= tcurv
when the curvatons decay, the energy density of the
universe consists of that of radiation ρr generated from
the decay of the inflatons and that of the curvaton ρφ.
The contribution of each component to the total curva-
ture perturbation of the universe may be conveniently
expressed in terms of ζr and ζφ, which are defined as
the curvature perturbations on the uniform energy density
slices of the radiation and the curvaton, respectively.
It is known that each of them is separately conserved

on superhorizon scales at t < tcurv. As for ζφ, it may
be evaluated by the energy density fluctuations on
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where te is the time at the end of inflation.
After the curvaton decay, the total curvature pertur-

bation on the slices of uniform total energy density, ζ, is
conserved on superhorizon scales. It is given by

ζ = (1− rφ)ζr + rφζφ , (13)

where rφ = 3ρφ/(4ρr +3ρφ)|tcurv .
For the moment, we ignore the contribution from δφ2/φ20

and concentrate on the skewness generated by the nonlin-
ear interaction with the tunneling field. Then we have
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where 〈δφ3〉 is given by eq. (9). An important feature is
that the skewness of the curvature perturbation depends
on the position of the bubble due to the spatial dependence
of 〈δφ3〉.
To proceed, we focus only on the large angular scale

CMB anisotropy for which the Sachs-Wolfe effect domi-
nates. In this regime, the CMB temperature anisotropy
can be written in terms of the curvature perturbation as
(δT/T )(n̂) = (1/5) ζ(x0+ r∗n̂, t∗), where x0 is the comov-
ing position of the observer measured from the bubble
center, n̂= (sin θ cosϕ, sin θ sinϕ, cos θ) is the directional
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cosine of the sky seen by the observer, r∗ is the comov-
ing distance from the observer to the last scattering
surface and t∗ is the time at the last scattering surface.
Then, defining the non-Gaussianity parameter fNL as
(3/5)fNL(n̂)≡ 〈ζ3(x0+ r∗n̂, t∗)〉/〈ζ2〉2, we have

fNL(n̂)≈
40r3φ
81〈ζ2〉2

〈δφ3(|x0+ r∗n̂|, t∗)〉
φ30

. (15)

One explicitly sees that the dependence on the position of
the bubble center breaks the statistical isotropy.
For completeness, let us discuss the additional contri-

butions to fNL which we have ignored. The contribution
of ζr to non-Gaussianity is known to be very small as
long as the vacuum is in the Bunch-Davies vacuum [8].
A deviation from the Bunch-Davies vacuum may give rise
to a non-zero non-Gaussianity. It is expected to be statis-
tically homogeneous and isotropic but scale-dependent (in
the Fourier space). It may be detected by the templates
of the equilateral or orthogonal types. The contribution
from the part of ζφ quadratic in δφ/φ0 gives rise to a local
type non-Gaussianity which is again statistically homoge-
neous and isotropic, and which may be detected by the
squeezed-type templates.
This contribution from the nonlinearity of δφ/φ0 in ζφ

may be estimated as follows. Roughly speaking, 〈δφ4〉 ≈
〈δφ2〉2 ≈ (H/2π)4 for m/H& 1, and the contribution to
〈ζ3φ〉 is about (4/9)(H/2πφ0)4. Thus, the condition that
fNL is dominated by the nonlinear interaction with the
bubble is given as
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This is satisfied in an example we compute below.
For illustration, we plot fNL(n̂) in the CMB sky in

fig. 6. The parameters are m/H = 0.3, HRW = 0.2π
H/φ0 = 0.001 λ= 0.005, rφ = 0.1, |x0|= r∗ = 2, Hte = 50.
For the variance 〈ζ2〉 we simply impose the observa-
tional result, 〈ζ2〉=A2ζ ≡ 6.25× 10−10 [7], assuming

that it is dominated by ζr (see footnote 3). Since

3In this case, it may not be appropriate to call φ a curvaton,
since it never dominates the curvature perturbations. Nevertheless,
we call it a curvaton for notational convenience.
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soon as the finite resolution of observations or renormal-
ization of the theory is taken into account.

Non-Gaussian bubbles in the sky. – Now we study
signatures of our model in the CMB anisotropy. In our
model, the evolution of the universe after the inflaton
and the tunneling field decay, is exactly the same as the
ordinary curvaton scenario [12]. Here, we estimate the
curvature perturbation after the curvaton decay by using
the sudden-decay approximation [13].
After inflation the curvaton starts to roll down the

potential and undergoes damped oscillations when the
Hubble parameter becomes smaller than m. The curvaton
energy density behaves like a pressureless matter during
this stage of damped oscillations. At the time t= tcurv
when the curvatons decay, the energy density of the
universe consists of that of radiation ρr generated from
the decay of the inflatons and that of the curvaton ρφ.
The contribution of each component to the total curva-
ture perturbation of the universe may be conveniently
expressed in terms of ζr and ζφ, which are defined as
the curvature perturbations on the uniform energy density
slices of the radiation and the curvaton, respectively.
It is known that each of them is separately conserved

on superhorizon scales at t < tcurv. As for ζφ, it may
be evaluated by the energy density fluctuations on
the uniform inflaton field slice at the end of inflation,
δρφ/ρφ, as

ζφ =
1

3

δρφ
ρφ

∣

∣

∣

∣

te

=
1

3

(

2
δφ

φ0
+
δφ2

φ20

)
∣

∣

∣

∣

te

, (12)

where te is the time at the end of inflation.
After the curvaton decay, the total curvature pertur-

bation on the slices of uniform total energy density, ζ, is
conserved on superhorizon scales. It is given by

ζ = (1− rφ)ζr + rφζφ , (13)

where rφ = 3ρφ/(4ρr +3ρφ)|tcurv .
For the moment, we ignore the contribution from δφ2/φ20

and concentrate on the skewness generated by the nonlin-
ear interaction with the tunneling field. Then we have

〈ζ3(r)〉 ≈ r3φ〈ζ3φ(r, te)〉 ≈
8

27
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〈δφ3(r, te)〉
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, (14)

where 〈δφ3〉 is given by eq. (9). An important feature is
that the skewness of the curvature perturbation depends
on the position of the bubble due to the spatial dependence
of 〈δφ3〉.
To proceed, we focus only on the large angular scale

CMB anisotropy for which the Sachs-Wolfe effect domi-
nates. In this regime, the CMB temperature anisotropy
can be written in terms of the curvature perturbation as
(δT/T )(n̂) = (1/5) ζ(x0+ r∗n̂, t∗), where x0 is the comov-
ing position of the observer measured from the bubble
center, n̂= (sin θ cosϕ, sin θ sinϕ, cos θ) is the directional

Fig. 6: (Color online) Non-Gaussianity map in the CMB sky,
for the model parameters given in the text. Colors correspond
to the values of fNL.

cosine of the sky seen by the observer, r∗ is the comov-
ing distance from the observer to the last scattering
surface and t∗ is the time at the last scattering surface.
Then, defining the non-Gaussianity parameter fNL as
(3/5)fNL(n̂)≡ 〈ζ3(x0+ r∗n̂, t∗)〉/〈ζ2〉2, we have
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81〈ζ2〉2

〈δφ3(|x0+ r∗n̂|, t∗)〉
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. (15)

One explicitly sees that the dependence on the position of
the bubble center breaks the statistical isotropy.
For completeness, let us discuss the additional contri-

butions to fNL which we have ignored. The contribution
of ζr to non-Gaussianity is known to be very small as
long as the vacuum is in the Bunch-Davies vacuum [8].
A deviation from the Bunch-Davies vacuum may give rise
to a non-zero non-Gaussianity. It is expected to be statis-
tically homogeneous and isotropic but scale-dependent (in
the Fourier space). It may be detected by the templates
of the equilateral or orthogonal types. The contribution
from the part of ζφ quadratic in δφ/φ0 gives rise to a local
type non-Gaussianity which is again statistically homoge-
neous and isotropic, and which may be detected by the
squeezed-type templates.
This contribution from the nonlinearity of δφ/φ0 in ζφ

may be estimated as follows. Roughly speaking, 〈δφ4〉 ≈
〈δφ2〉2 ≈ (H/2π)4 for m/H& 1, and the contribution to
〈ζ3φ〉 is about (4/9)(H/2πφ0)4. Thus, the condition that
fNL is dominated by the nonlinear interaction with the
bubble is given as
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This is satisfied in an example we compute below.
For illustration, we plot fNL(n̂) in the CMB sky in

fig. 6. The parameters are m/H = 0.3, HRW = 0.2π
H/φ0 = 0.001 λ= 0.005, rφ = 0.1, |x0|= r∗ = 2, Hte = 50.
For the variance 〈ζ2〉 we simply impose the observa-
tional result, 〈ζ2〉=A2ζ ≡ 6.25× 10−10 [7], assuming

that it is dominated by ζr (see footnote 3). Since

3In this case, it may not be appropriate to call φ a curvaton,
since it never dominates the curvature perturbations. Nevertheless,
we call it a curvaton for notational convenience.
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soon as the finite resolution of observations or renormal-
ization of the theory is taken into account.

Non-Gaussian bubbles in the sky. – Now we study
signatures of our model in the CMB anisotropy. In our
model, the evolution of the universe after the inflaton
and the tunneling field decay, is exactly the same as the
ordinary curvaton scenario [12]. Here, we estimate the
curvature perturbation after the curvaton decay by using
the sudden-decay approximation [13].
After inflation the curvaton starts to roll down the

potential and undergoes damped oscillations when the
Hubble parameter becomes smaller than m. The curvaton
energy density behaves like a pressureless matter during
this stage of damped oscillations. At the time t= tcurv
when the curvatons decay, the energy density of the
universe consists of that of radiation ρr generated from
the decay of the inflatons and that of the curvaton ρφ.
The contribution of each component to the total curva-
ture perturbation of the universe may be conveniently
expressed in terms of ζr and ζφ, which are defined as
the curvature perturbations on the uniform energy density
slices of the radiation and the curvaton, respectively.
It is known that each of them is separately conserved

on superhorizon scales at t < tcurv. As for ζφ, it may
be evaluated by the energy density fluctuations on
the uniform inflaton field slice at the end of inflation,
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where te is the time at the end of inflation.
After the curvaton decay, the total curvature pertur-

bation on the slices of uniform total energy density, ζ, is
conserved on superhorizon scales. It is given by

ζ = (1− rφ)ζr + rφζφ , (13)

where rφ = 3ρφ/(4ρr +3ρφ)|tcurv .
For the moment, we ignore the contribution from δφ2/φ20

and concentrate on the skewness generated by the nonlin-
ear interaction with the tunneling field. Then we have

〈ζ3(r)〉 ≈ r3φ〈ζ3φ(r, te)〉 ≈
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where 〈δφ3〉 is given by eq. (9). An important feature is
that the skewness of the curvature perturbation depends
on the position of the bubble due to the spatial dependence
of 〈δφ3〉.
To proceed, we focus only on the large angular scale

CMB anisotropy for which the Sachs-Wolfe effect domi-
nates. In this regime, the CMB temperature anisotropy
can be written in terms of the curvature perturbation as
(δT/T )(n̂) = (1/5) ζ(x0+ r∗n̂, t∗), where x0 is the comov-
ing position of the observer measured from the bubble
center, n̂= (sin θ cosϕ, sin θ sinϕ, cos θ) is the directional

Fig. 6: (Color online) Non-Gaussianity map in the CMB sky,
for the model parameters given in the text. Colors correspond
to the values of fNL.

cosine of the sky seen by the observer, r∗ is the comov-
ing distance from the observer to the last scattering
surface and t∗ is the time at the last scattering surface.
Then, defining the non-Gaussianity parameter fNL as
(3/5)fNL(n̂)≡ 〈ζ3(x0+ r∗n̂, t∗)〉/〈ζ2〉2, we have

fNL(n̂)≈
40r3φ
81〈ζ2〉2

〈δφ3(|x0+ r∗n̂|, t∗)〉
φ30

. (15)

One explicitly sees that the dependence on the position of
the bubble center breaks the statistical isotropy.
For completeness, let us discuss the additional contri-

butions to fNL which we have ignored. The contribution
of ζr to non-Gaussianity is known to be very small as
long as the vacuum is in the Bunch-Davies vacuum [8].
A deviation from the Bunch-Davies vacuum may give rise
to a non-zero non-Gaussianity. It is expected to be statis-
tically homogeneous and isotropic but scale-dependent (in
the Fourier space). It may be detected by the templates
of the equilateral or orthogonal types. The contribution
from the part of ζφ quadratic in δφ/φ0 gives rise to a local
type non-Gaussianity which is again statistically homoge-
neous and isotropic, and which may be detected by the
squeezed-type templates.
This contribution from the nonlinearity of δφ/φ0 in ζφ

may be estimated as follows. Roughly speaking, 〈δφ4〉 ≈
〈δφ2〉2 ≈ (H/2π)4 for m/H& 1, and the contribution to
〈ζ3φ〉 is about (4/9)(H/2πφ0)4. Thus, the condition that
fNL is dominated by the nonlinear interaction with the
bubble is given as
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This is satisfied in an example we compute below.
For illustration, we plot fNL(n̂) in the CMB sky in

fig. 6. The parameters are m/H = 0.3, HRW = 0.2π
H/φ0 = 0.001 λ= 0.005, rφ = 0.1, |x0|= r∗ = 2, Hte = 50.
For the variance 〈ζ2〉 we simply impose the observa-
tional result, 〈ζ2〉=A2ζ ≡ 6.25× 10−10 [7], assuming

that it is dominated by ζr (see footnote 3). Since

3In this case, it may not be appropriate to call φ a curvaton,
since it never dominates the curvature perturbations. Nevertheless,
we call it a curvaton for notational convenience.
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soon as the finite resolution of observations or renormal-
ization of the theory is taken into account.

Non-Gaussian bubbles in the sky. – Now we study
signatures of our model in the CMB anisotropy. In our
model, the evolution of the universe after the inflaton
and the tunneling field decay, is exactly the same as the
ordinary curvaton scenario [12]. Here, we estimate the
curvature perturbation after the curvaton decay by using
the sudden-decay approximation [13].
After inflation the curvaton starts to roll down the

potential and undergoes damped oscillations when the
Hubble parameter becomes smaller than m. The curvaton
energy density behaves like a pressureless matter during
this stage of damped oscillations. At the time t= tcurv
when the curvatons decay, the energy density of the
universe consists of that of radiation ρr generated from
the decay of the inflatons and that of the curvaton ρφ.
The contribution of each component to the total curva-
ture perturbation of the universe may be conveniently
expressed in terms of ζr and ζφ, which are defined as
the curvature perturbations on the uniform energy density
slices of the radiation and the curvaton, respectively.
It is known that each of them is separately conserved

on superhorizon scales at t < tcurv. As for ζφ, it may
be evaluated by the energy density fluctuations on
the uniform inflaton field slice at the end of inflation,
δρφ/ρφ, as
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where te is the time at the end of inflation.
After the curvaton decay, the total curvature pertur-

bation on the slices of uniform total energy density, ζ, is
conserved on superhorizon scales. It is given by

ζ = (1− rφ)ζr + rφζφ , (13)

where rφ = 3ρφ/(4ρr +3ρφ)|tcurv .
For the moment, we ignore the contribution from δφ2/φ20

and concentrate on the skewness generated by the nonlin-
ear interaction with the tunneling field. Then we have
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where 〈δφ3〉 is given by eq. (9). An important feature is
that the skewness of the curvature perturbation depends
on the position of the bubble due to the spatial dependence
of 〈δφ3〉.
To proceed, we focus only on the large angular scale

CMB anisotropy for which the Sachs-Wolfe effect domi-
nates. In this regime, the CMB temperature anisotropy
can be written in terms of the curvature perturbation as
(δT/T )(n̂) = (1/5) ζ(x0+ r∗n̂, t∗), where x0 is the comov-
ing position of the observer measured from the bubble
center, n̂= (sin θ cosϕ, sin θ sinϕ, cos θ) is the directional
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cosine of the sky seen by the observer, r∗ is the comov-
ing distance from the observer to the last scattering
surface and t∗ is the time at the last scattering surface.
Then, defining the non-Gaussianity parameter fNL as
(3/5)fNL(n̂)≡ 〈ζ3(x0+ r∗n̂, t∗)〉/〈ζ2〉2, we have
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81〈ζ2〉2

〈δφ3(|x0+ r∗n̂|, t∗)〉
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. (15)

One explicitly sees that the dependence on the position of
the bubble center breaks the statistical isotropy.
For completeness, let us discuss the additional contri-

butions to fNL which we have ignored. The contribution
of ζr to non-Gaussianity is known to be very small as
long as the vacuum is in the Bunch-Davies vacuum [8].
A deviation from the Bunch-Davies vacuum may give rise
to a non-zero non-Gaussianity. It is expected to be statis-
tically homogeneous and isotropic but scale-dependent (in
the Fourier space). It may be detected by the templates
of the equilateral or orthogonal types. The contribution
from the part of ζφ quadratic in δφ/φ0 gives rise to a local
type non-Gaussianity which is again statistically homoge-
neous and isotropic, and which may be detected by the
squeezed-type templates.
This contribution from the nonlinearity of δφ/φ0 in ζφ

may be estimated as follows. Roughly speaking, 〈δφ4〉 ≈
〈δφ2〉2 ≈ (H/2π)4 for m/H& 1, and the contribution to
〈ζ3φ〉 is about (4/9)(H/2πφ0)4. Thus, the condition that
fNL is dominated by the nonlinear interaction with the
bubble is given as
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This is satisfied in an example we compute below.
For illustration, we plot fNL(n̂) in the CMB sky in

fig. 6. The parameters are m/H = 0.3, HRW = 0.2π
H/φ0 = 0.001 λ= 0.005, rφ = 0.1, |x0|= r∗ = 2, Hte = 50.
For the variance 〈ζ2〉 we simply impose the observa-
tional result, 〈ζ2〉=A2ζ ≡ 6.25× 10−10 [7], assuming

that it is dominated by ζr (see footnote 3). Since

3In this case, it may not be appropriate to call φ a curvaton,
since it never dominates the curvature perturbations. Nevertheless,
we call it a curvaton for notational convenience.
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