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Higgs discovery
at the LHC

® Higgs boson: The Last missing particle of the SM
particles

® Probably starting point of “the Beyond the stard
model”

e why we think so, and how it conflicts with data



Standard model of particle physics
history

Three generations
of matter (fermions)

® Discover the symmetry “SU(3)xSU(2)xU(1)” out mu; m:m, u':m
from interactions involving mesons, leptons, "2 1%U |=C I:f’st
charm op

name -
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[
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and baryons
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e finding “the three generation in the matter

sector” Ve |V, [ov: |E 20
:Elm ﬂgl‘llgo ﬂel?:lho Zbason o
e The SM identify “universal forces” to the gauge | - éem Zl_f ;szv : ;‘m
symmetry, representation (charge) difference § | skoron | muon | mu Y |G
leads interaction difference.
e putting origin of the symmetry breaking (“mass”) H ?
to nature of the spin 0 sector ( Higgs boson ). o
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discovery summary

e Higgs couples to massive objects in

the tree level, tt, bb, ZZ, WW...

e discovery in photon and lepton
channel H—=»yy H-— ZZand H—

WW. We can only measure
(procution) x (branching ratio) at
LHC.

® production gg— H dominant,
subdominant WW, ZZ— H
contribution is seen. The two
process overlap significantly.
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question on the mass value

Are we in meta stable vacuum or there are new physics
in between? is this consistent with cosmology?
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Fig. 18. The temperature dependent potential for my,, .. = 50 GeV and
for m, =240 GeV. Here, V=8V/miliggs and units of o =1 are used. MH [Gev]

but A get negative

correction at large ¢
We are on the meta stable vacuum?

or there is something between 100GeV to 10'°GeV
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question on the mass value

Are we in meta stable vacuum or there are new physics

10 182
s 180
6 -
178
4 |-
S % 176
0 5 174
5 ;_)_'
ol Sl
o FE)
= 170
s 168
-8 |-
166
-10 L L.
0.0 1.0 2.0 3.0 164
s e ¢ 5 s 120 1629 124 126 128 130 e
Fig. 18. The temperature dependent potential for m,;, = eV an
for m, =240 GeV. Here, I’7=8V/mi,iggs and units of o =1 are used. MH [GeV]

but A get negative

correction at large ¢
We are on the meta stable vacuum?

or there is something between 100GeV to 10'°GeV
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New Physics, Clue

Fine tuning in the Higgs sector

= =

/’/higgs\\\
ot e : \l

if scale of momentum cut off
sl top loop  —g25AA%?  ~ —(2 TeV)?

SU(2) gauge boson loops —2-g°A%  ~ (700 GeV)?

Higgs loop —>A2A% ~ (500 GeV)?.

Others are reasonable Why Higgs vev is O(200) GeV?¢?
: auge two point
m¢ log A fermion mass Balls P

function

H,uu = (QWPQ S p,upz/)H
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Classic Solution:Supersymmetry

 exchange boson and fermion. @ <> ¥

e sfermions(0), gaugino(1/2), higgsinos(1/2)

® boson and fermion are in the same multiplet; chiral symmetry
extended to bosons. No quadratic divergence

® No new dimensionless coupling and no quadratic divergence

® Higgs 4 point coupling is written by gauge coupling. (no
negative 4 point coupling. )

® gauge coupling unification

® R parity in MSSM . New stable particle= DM candidate.
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Higgs 4 point coupling at low energy

tree level Higgs mass < mZ + additional correction to

mt

SM RGE running
give extra Yt* logmsiop/my

from stop sector

Low evxerng
effective -[-,heov\j
without SuSY

thveshold

covvectiown

«Xt* (stop left

right mixing)/
gauge coupling
(SUSY relation)

mstop

scale
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Higgs mass vs SUSY

_ o largestop | large stop mixing required for
c [ MG ' light stop mass in model
=T independent approach
- I
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Higgs mass vs SUSY

o o large stop |
e I mixing ;
x L
= S
S i
I
e °r 0
S i
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anomaly mediation 115
=> Huge Tension
110
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large stop mixing required for
light stop mass in model
independent approach

~JGRA
- MSB
A VSB

The difference comes from model constraint
to A parameters
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limit at 8TeV (from recent ATLAS)

MSUGRA/CMSSM: tan = 10, A = 0, u>0

; 800 : | I ' | LR —l... I - ,l, _l ) 7l7 "7 I l 1 | I I LI ' | I l‘i. | ' I I ? | I I
8 . E ATLAS Preliminary | Lat=5.815' 1s-6 Tev
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650 ‘«\ ---~ Expected limit (+15,,,)
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' *\ % ‘ . l‘
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SUSY > (or maybe >>) 1TeV, Does this cause fine turning?

under the assumption of universal SUSY breaking(MSUGRA)
sleptons are much above 300 GeV



Basic collider objects and supersymmetry

‘ Missing PT . —
I

New particle

e

New particle

12F11H12BAEH
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really SUSY particles are so heavy?

® Too large fine turning? Correction to the higgs mass

exceed higgs mass

vacuum energy anyway..

e By extending model to Next Minimal SUSY, higgs
masses upper limit increase— allowing light SUSY
particles.

e contribution from 4th generation can also
contribute

W:Y/HUQ/U,—I_M/(Q/Q,—I_U/I_]/)

3v? m2
Amy, ~ —Y"*In —= +.
472 m%,

ms): vector scalar(fermion) mass
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e |s this such a big problem? GUT/weak scale fine o
turning has been solved. We have fine turning in
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Figure 1: Upper bound on the lightest Higgs mass in the NMSSM for my,, = 178 GeV.
(thick full line: my, arbitrary, thick dotted line: my = 1 TeV) and my,, = 171.4 GeV
(thin full line: m4 arbitrary, thick dotted line: my = 1 TeV) and in the MSSM (with
my = 1 TeV) for my,, = 178 GeV (thick dashed line) and my,, = 171.4 GeV (thin dashed
line) as obtained with NMHDECAY as a function of tan8. Squark and gluino masses are
1 TeV and Ay, = 2.5 TeV.
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stop search

Direct search limit are actually not so strong
allows for relatively light stop for NMSSM

tt production: 1. —>b+x‘ x‘—> wt )+x (BR=1, m. < 200 GeV); t ->t+x (BR=1, m. > 200 GeV)
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light

® stop mixing makes the lighter stop

® model is NMSSM so that stop is

need not to be light.

top

® stop mixing — top polarization
from stop decay(visible at LHC)

b jet
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Limit for degenerate SUSY

The previous plot assumes universal
scalar and gaugino mass at GUT scale.
=> large mass splitting between QCD and EW SUSY particles

model independent gluino and squark mass could be
much lighter (stop still needs to be heavy in MSSM)

18

Simplified model, 99 — qGqq i?)”(? Simplified model, §§* — oG i?%?
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this is a window to
- new physics L "
|14
h == hom= 2%
-=-h
|14
all charged
new particles 7 K
g + other colored
new particles

My = 126 GeV I RH_;W My = 126 GeV | Ry _;ZZ

production Of Vs=T7®8 TeV Vs=T7®8 TeV
o ] AZ&-PDF%—EFT ] AZE—PDF-&-EFT
Higgs boson Abhemwo Abhcawe
very light stau O(100GeV) = e
or scalar top generation may
. ATLAS ° ATLAS
change Higgs branches up
to 20% ATLAS & CMS e ATLAS & CMS
NMSSM can account for FesnEmsmm e eses L e s e e
. B o° [oam o°P Jogm
deviations from SM , ,
Figure 2: The value of Rx x for the H — vy and ZZ final states given by the ATLAS and CMS

collaborations, as well as their combination, compared to the theoretical uncertainty bands.
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How about the EW SUSYparticle ¢

this is a window to
new physics L "

h-- === %

all chare-"~ d
ay ,
+ other colored . | T‘(’\US
’ new particles a\’[ Uﬂt\\

tO W _aH — ]_|26 GeV I I R’H-;ZZ
production (Need eek VA= T08 Tev
] AZ&PDF+EFT

Higgs bosor. o e

very light stau O(100GeV) e o
or scalar top generation may

change Higgs branches up | ™% S —
to 200/0 ATLAS @ CMS AR ATLAS @& CMS
NMSSM can account for e e = e
oobs / T gobs / Osm

deviations from SM

Figure 2: The value of Rx x for the H — vy and ZZ final states given by the ATLAS and CMS
collaborations, as well as their combination, compared to the theoretical uncertainty bands.
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Maybe sleptons are light at least?
muon g-2

a®*P = 116592 089 (63) [10-1]

7

a® —a;M = (26.14+8.0)-107" > 30 deviation

need light EW SUSY particle

v ' 1
< Ny Endo, Hamaguchi, Iwamoto, Nakayama Yokozaki
F{r + \‘.'l
! X ' 800 F ' ' ' ' £ 800 F ' ' ' ' £
i H stau
stau -SP
¥ % 700 | LSp 1 %' 700 t 1
) )
chargino-sneutrino 2 ool S o
[ ‘j_r(J 4 500 | : 500 |
s g-2
T i ' g-2 .
r.'f XU ‘ll 400 | : : n . ] 400 L : . . . ]
. : 100, %= 200 --~-300: = ‘400"~ 500~ 600 100 200 300 400 500 600
H H mo [GeV] mo [GeV]
neutralino-smuon Figure 3: Contours of the Higgs mass and the muon g — 2 are shown. The Higgs mass are

maximized by choosing Ay and A, appropriately under the Br(B — X,7) constraint in the
CMSSM models (left) and the extension (right), respectively (“mj-max scenario”). In the
dark green region, the Higgs mass is 124 — 126 GeV, and it becomes larger than 124 GeV in
the light green region once the uncertainties are included. In the orange (yellow) regions,
the muon g — 2 is explained at the 1o (20) level. The LSP is the (lighter) stau in the
upper-left shaded region, while the lightest neutralino in the rest.
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\ ® Ex Randall Sundrums model
Bt 5D Wavefunctilg)n
: eavy
light
The Sar | matters
side | in the bulk i
= = the (R brane higgs
‘M,;) KKgauge (TeV)
mixing with KK
nuge contribution to gg—h and h—Yyy process "
+mixing between radion(the 5th direction mode ) o
and higgs boson Ryy ¥
Le = \/Gma€ R(gina) H'H N
Rzz
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Light Supersymmetry

muon g-2 branching ratio

little hierarchy problem

SEIS

T A LR R A

Mind of some theorists

dev in higgs

e

Heavy Supersymmery

Higgs mass

FCNC | and MSSM

A

extra
degene 1 matter

Lot’s of Model building here..

R parity
violation



“really nothing so far
(except the SM higgs boson )

//

“Is this a dead end of particle
physics?”

My impression is different

12611 812H BEH



Hadron collider searches:past and now

e To calculate SUSY background, we need to know W, t, Z with multiple
jets in the final state. In 90’s: we did not know how to calculate the
processes appropriately for the hadron collider. “l do not trust hadron
collider physics” was typical attitudes in e*e-collider funs.

® |t took very long time to get limit from hadron collider data, and
there were fake discovery as well (famous SPS1a...)
photo 1972

Progress in “Matching” and NLO, /
we have better background
prediction now.

We can “exclude” the model
parameters rather convincingly , and
we do not “discover” much unless
we comes to the point to discover.

12£ﬁ11ﬁ12ElH%EEI
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Parton shower and hard process

¢ MC simulation for hadron collider roughly

Z
divided into three parts dopi1 = don dt dz‘;—sﬁba(z) %
T

® “hard process” gg—H, gg qq—SUSY..

e Initial/final state radiation: multiple emission & A S \
of collinear gluon and quarks. often treated

by parton shower approximation (multiple
emission summed.

| hist_temp 2002 _Inin | 1stJetPt

: : 10t Top—pair RMS 1128
e Background: QCD process with multiple hard " Highest Pt of the additional jet
jets. ex: process of W+n hard parton: some 0L

tt+njet

of the hard partons overlap with parton
showers. “double counting problem”

10° B

107
® “Maching” is a consitent treatment to veto the s Ml L el
overlap between hard and soft process. Pt(GeV)

12611 812H BEH
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Data vs Theory in 2003

Data vs Theory
CDF Run Il Preliminary
S 2.5 W-sev+=njets, 127 pb”
o JetClu R=0.4 (E >15 GeV, b, I<2.4)
2 2
% 15 { "
=, ¢ b
: {
1 T e ] -----------
0
‘5’05_ > LO QCD = M,
P 010 QCD = <>

-
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0 Jethultiplicﬁy( znPets)

o = n jets)yo( = n-1 jets)

&
w

&
n

o
-t

W+jets (leading SUSY BG at 7TeV )

Ratio of Cross-sections

-

CDF Run Il Preliminary

— W—sev4=njets, 127 pb~

JetClu R=0.4 (E->15 GeV, iy, 1<2.4)

® LOQCD ug= M,
 LO QCD uy= <pr>
) | 1

® Runll 127 pb”
* Runl108pb "

|

1

Jet Mtiplicity ( = jets)

This allows estimate of background with “confidence “



Data vs Theory in 2011

W+jets (leading SUSY BG at 7TeV )
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cross section at 13TeV run

u T T
1400 -
1b
~~-~.._gluino/squark - x ass. prod.
1200 \\"\\‘~ included
1000 [
800 | M w2 2Tev
600
400 |- _\ o
- <, i iTeV
/ é 17eV g
[— =4 Apg=0,tanB =35 nu >0 =
0 I | !
0 500 1000 1500 2000
Mo (GeV)

LHC at 13TeV max total cross section

Is around
100 fb-1—1000 events

Max reach will be around 10fb to 1fb
2.5TeV

If nature takes supersymmetry,
significant parameter space will be
covered by the 13TeV run

:2TeV

Study of Higgs sector is also very
important O(10%) measurement of
Branches

e+e- collider O(1%)
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Direct search will be serious constraint this year

10-3’9 | | | | | |l
XENON100 (2012)

— observed limit (90% CL)
Expected limit of this run:

B £ | o expected

B + 2 ¢ expected
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Ubber Limit (90% C.L.) is 2 x 10-4°em? for 55 GeV/c2 WIMP
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waiting for new data to decide the direction

with LHC at 13TeV, it will have a great fall ...

To where?

12611 812H BEH
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waiting for new data to decide the direction

12611 812H BEH



	03nojiri
	nojiri

