

Mihoko Nojiri, JGRG 22(2012)111203

"The Standard model and beyond after LHC at 8 TeV"

RESCEU SYMPOSIUM ON

GENERAL RELATIVITY AND GRAVITATION

JGRG 22

November 12-16 2012

Koshiba Hall, The University of Tokyo, Hongo, Tokyo, Japan

Higgs discovery and BSM Mihoko M. Nojiri

Higgs discovery at the LHC

- Higgs boson: The Last missing particle of the SM particles
- Probably starting point of "the Beyond the stard model"
- why we think so, and how it conflicts with data

Standard model of particle physics history

- Discover the symmetry "SU(3)xSU(2)xU(1)" out from interactions involving mesons, leptons, and baryons
- finding "the three generation in the matter sector"
- The SM identify "universal forces" to the gauge symmetry, representation (charge) difference leads interaction difference.
- putting origin of the symmetry breaking ("mass") to nature of the spin 0 sector (Higgs boson).

discovery summary

- Higgs couples to massive objects in the tree level, tt, bb, ZZ, WW...
- discovery in photon and lepton channel $H \rightarrow \gamma \gamma$ $H \rightarrow ZZ$ and $H \rightarrow$ WW. We can only measure (procution) x (branching ratio) at LHC.
- production gg → H dominant, subdominant WW, ZZ → H contribution is seen. The two process overlap significantly.

question on the mass value

Are we in meta stable vacuum or there are new physics in between? is this consistent with cosmology?

question on the mass value

Are we in meta stable vacuum or there are new physics in between? is this consistent with cosmology?

Classic Solution:Supersymmetry

- exchange boson and fermion. $\phi \leftrightarrow \psi$
 - sfermions(0), gaugino(1/2), higgsinos(1/2)
- boson and fermion are in the same multiplet; chiral symmetry extended to bosons. No quadratic divergence
- No new dimensionless coupling and no quadratic divergence
- Higgs 4 point coupling is written by gauge coupling. (no negative 4 point coupling.)
- gauge coupling unification
- R parity in MSSM . New stable particle \rightarrow DM candidate.

Higgs mass vs SUSY

Higgs mass vs SUSY

large SUSY scale required in simple gauge and anomaly mediation => Huge Tension large stop mixing required for light stop mass in model independent approach

limit at 8TeV (from recent ATLAS)

SUSY > (or maybe >>) 1TeV, Does this cause fine turning?

under the assumption of **universal SUSY breaking**(MSUGRA), sleptons are much above 300 GeV

Basic collider objects and supersymmetry

really SUSY particles are so heavy?

- Too large fine turning? Correction to the higgs mass exceed higgs mass
 - Is this such a big problem? GUT/weak scale fine turning has been solved. We have fine turning in vacuum energy anyway..
- By extending model to Next Minimal SUSY, higgs masses upper limit increase → allowing light SUSY particles.

Figure 1: Upper bound on the lightest Higgs mass in the NMSSM for $m_{top} = 178$ GeV (thick full line: m_A arbitrary, thick dotted line: $m_A = 1$ TeV) and $m_{top} = 171.4$ GeV (thin full line: m_A arbitrary, thick dotted line: $m_A = 1$ TeV) and in the MSSM (with $m_A = 1$ TeV) for $m_{top} = 178$ GeV (thick dashed line) and $m_{top} = 171.4$ GeV (thin dashed line) as obtained with NMHDECAY as a function of tan β . Squark and gluino masses are 1 TeV and $A_{top} = 2.5$ TeV.

stop search Direct search limit are actually not so strong allows for relatively light stop for NMSSM $\widetilde{t_1}\widetilde{t_1} \text{ production: } \quad \widetilde{t_1} \rightarrow b + \widetilde{\chi}_1^{\pm}, \\ \widetilde{\chi}_1^{\pm} \rightarrow W^{(^{\ast})} + \widetilde{\chi}_1^0 \text{ (BR=1, } m_{\widetilde{t_1}} < 200 \text{ GeV}\text{); } \quad \widetilde{t_1} \rightarrow t + \widetilde{\chi}_1^0 \text{ (BR=1, } m_{\widetilde{t_1}} > 200 \text{ GeV}\text{)}$ $m_{\tilde{\chi}_1^0}$ [GeV] Observed limits (-1 of SUSY $\rightarrow b + \tilde{\chi}_{1}^{z}, \tilde{\chi}_{1}^{z} \rightarrow W'' + \tilde{\chi}_{1}' (m_{z} < 200 \text{ GeV})$ ATLAS Preliminary 200 2-lepton (m_ = 106 GeV) Observed limits (nominal) 1/2-leptons + b-jets (m_{et} = 106 GeV) L dt = 4.7 fb⁻¹ √s=7 TeV ---- Expected limits (nominal) 180 1/2-leptons + b-jets $(m_{y^{1}}^{2} = 2 \times m_{y^{0}})$ All limits at 95% CL, Status: ICHEP 2012 χ̃ (m, > 200 GeV) 160 0-lepton 1-lepton 140 2-lepton 120 toward low pT _m____ > m____ (= 106 GeV) 106 co close 12 c 106 co close 12 c 100 co close 12 c with a lepton 100 lepton is 80 too small 60 more gain for 0 lepton channel 40 20 0 150 200 250 300 350 400 450 500 550 m_{t̃} [GeV]

Limit for degenerate SUSY

The previous plot assumes universal scalar and gaugino mass at GUT scale. => large mass splitting between QCD and EW SUSY particles

model independent gluino and squark mass could be much lighter (stop still needs to be heavy in MSSM)

18

Simplified model, $\tilde{q}\tilde{q} \rightarrow q\bar{q}q\bar{q} \tilde{\chi}^0 \tilde{\chi}^0$ Simplified model, $\widetilde{q}\widetilde{q}^* \rightarrow q\overline{q} \widetilde{\chi}^{0}\widetilde{\chi}^{1}$ LSP mass [GeV] 10 10 [GeV] mass [GeV] mass [GeV] section × BR [fb] excluded model cross section × BR [fb] ATLAS ATLAS Combined Combined ∫ L dt = 4.7 fb⁻¹, √s=7 TeV L dt = 4.7 fb⁻¹, √s=7 TeV Observed limit $(\pm 1 \sigma_{..}^{SUST})$ Observed limit $(\pm 1 \sigma_{u}^{SUSY})$ LSP model cross – Expected limit (±1 σ_α) Expected limit ($\pm 1 \sigma_{ex}$ 800 800 excluded 600 600 Numbers give 95% CL % CL 400 400 Numbers give 95 200 200 0 900 1000 1100 1000 1100 1200 800 1200 700 800 700 500 600 900 gluino mass [GeV] squark mass [GeV] (a) (b)

How about the EW SUSYparticle ?

Figure 2: The value of R_{XX} for the $H \to \gamma \gamma$ and ZZ final states given by the ATLAS and CMS collaborations, as well as their combination, compared to the theoretical uncertainty bands.

How about the EW SUSYparticle ?

Figure 2: The value of R_{XX} for the $H \to \gamma \gamma$ and ZZ final states given by the ATLAS and CMS collaborations, as well as their combination, compared to the theoretical uncertainty bands.

Mind of some theorists

"really nothing so far (except the SM higgs boson)"

"Is this a dead end of particle physics?"

My impression is different

Hadron collider searches:past and now

- To calculate SUSY background, we need to know W, t, Z with multiple jets in the final state. In 90's: we did not know how to calculate the processes appropriately for the hadron collider. "I do not trust hadron collider physics" was typical attitudes in e⁺e⁻collider funs.
 - It took very long time to get limit from hadron collider data, and there were fake discovery as well (famous SPS1a...)

photo 1972

- Progress in "Matching" and NLO, we have better background prediction now.
- We can "exclude" the model parameters rather convincingly, and we do not "discover" much unless we comes to the point to discover.

Parton shower and hard process

- MC simulation for hadron collider roughly divided into three parts
 - "hard process" $gg \rightarrow H$, $gg, qq \rightarrow SUSY$..
 - Initial/final state radiation: multiple emission of **collinear gluon and quarks**. often treated by parton shower approximation (multiple emission summed.
- Background: QCD process with multiple hard jets. ex: process of W+n hard parton: some of the hard partons overlap with parton showers. "double counting problem"
- "Maching" is a consitent treatment to veto the overlap between hard and soft process.

$$d\sigma_{n+1} = d\sigma_n \frac{dt}{t} dz \frac{\alpha_s}{2\pi} \widehat{P}_{ba}(z)$$

W+jets (leading SUSY BG at 7TeV) Data vs Theory in 2011

This allows estimate of background with "confidence"

cross section at 13TeV run

LHC at 13TeV max total cross section is around $100 \text{ fb-1} \rightarrow 1000 \text{ events}$

Max reach will be around 10fb to 1fb 2.5TeV

If nature takes supersymmetry, significant parameter space will be covered by the 13TeV run

> Study of Higgs sector is also very important O(10%) measurement of Branches e+e- collider O(1%)

Direct search will be serious constraint this year XENON100: New Spin-Independent Results

waiting for new data to decide the direction

with LHC at 13TeV, it will have a great fall ...

To where?

waiting for new data to decide the direction

with LHC at 13TeV, it will have a great fall ...

To where?