# Effective field theory approach to quasi-single field inflation

Toshifumi Noumi (The University of Tokyo, Komaba)

based on arXiv: 1211.1624 with Masahide Yamaguchi and Daisuke Yokoyama (Tokyo Institute of Technology)

JGRG22 - RESCEU, 12th November 2012

# classification of inflation models w.r.t. relevant dof

|                | relevant dof                      |
|----------------|-----------------------------------|
| single field   | adiabatic mode $\zeta$ (massless) |
| multiple field | adiabatic + isocurvatures         |
|                | ••••••                            |
|                |                                   |
|                |                                   |
|                |                                   |
|                |                                   |

# classification of inflation models w.r.t. relevant dof

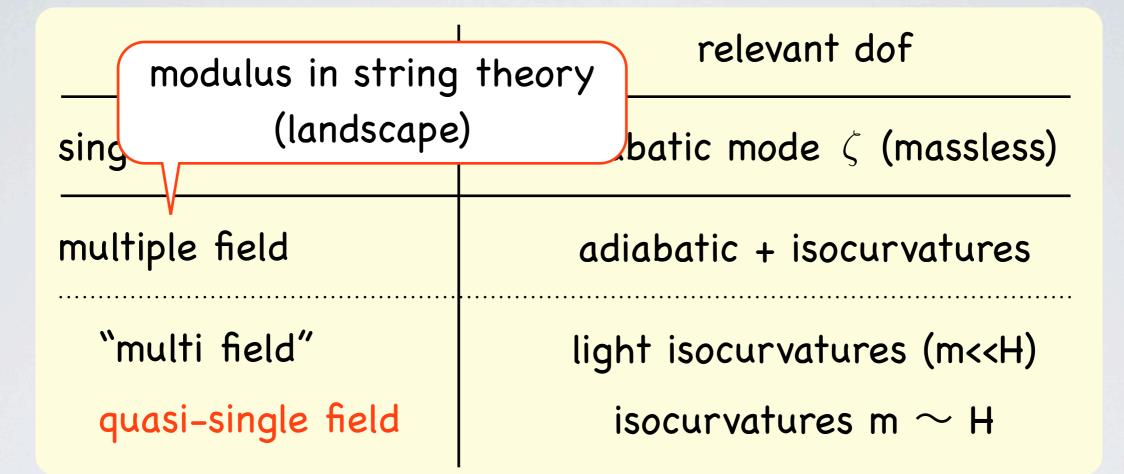
|                    | relevant dof                              |
|--------------------|-------------------------------------------|
| single field       | adiabatic mode $\zeta$ (massless)         |
| multiple field     | adiabatic + isocurvatures                 |
| "multi field"      | light isocurvatures (m< <h)< th=""></h)<> |
| quasi-single field | isocurvatures m $\sim$ H                  |

# classification of inflation models w.r.t. relevant dof

|                    | relevant dof                              |
|--------------------|-------------------------------------------|
| single field       | adiabatic mode $\zeta$ (massless)         |
| multiple field     | adiabatic + isocurvatures                 |
| "multi field"      | light isocurvatures (m< <h)< th=""></h)<> |
| quasi-single field | isocurvatures m $\sim$ H                  |

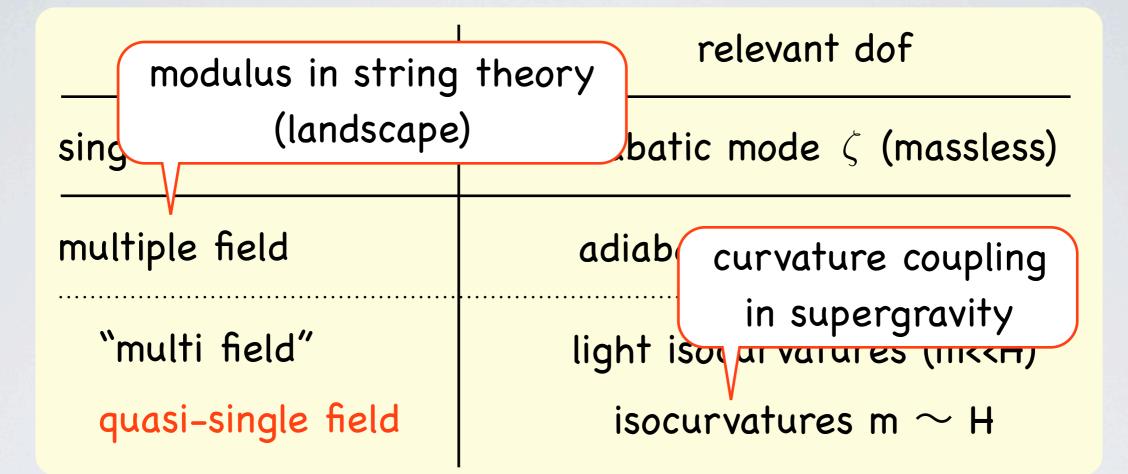
well motivated by model building
 (string inspired, supergravity based, ... )

# classification of inflation models w.r.t. relevant dof



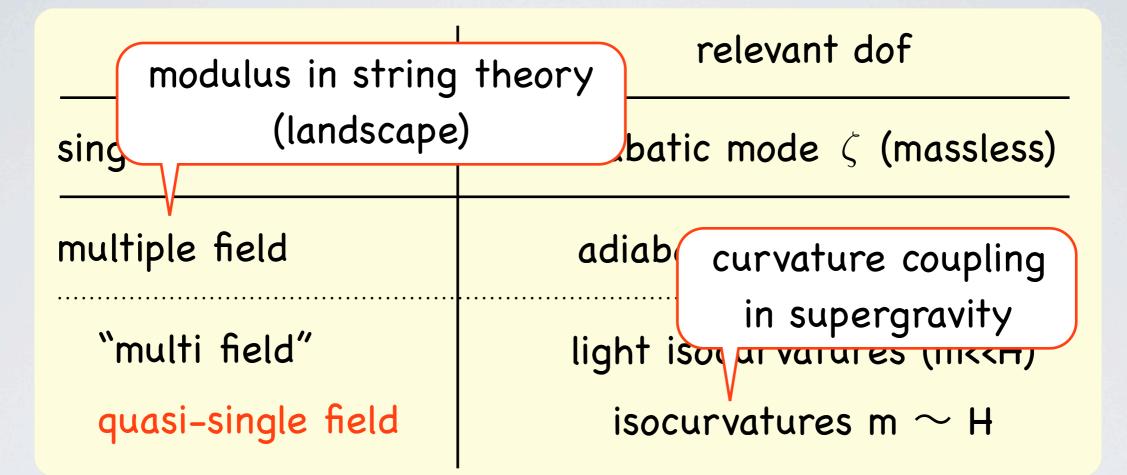
well motivated by model building
 (string inspired, supergravity based, ... )

# classification of inflation models w.r.t. relevant dof



well motivated by model building
 (string inspired, supergravity based, ... )

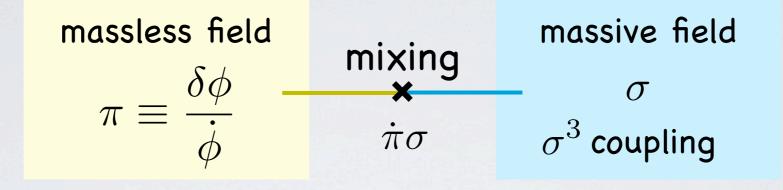
# classification of inflation models w.r.t. relevant dof



well motivated by model building
 (string inspired, supergravity based, ... )

phenomenologically interesting
 (characteristic signatures in primordial perturbations)

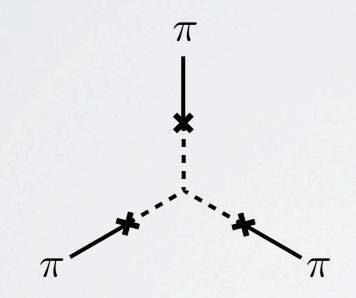
### # quasi-single field inflation [Chen-Wang '09]



# quasi-single field inflation [Chen-Wang '09]



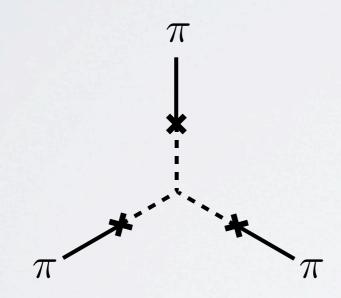
- can potentially give large non-Gaussianities



# quasi-single field inflation [Chen-Wang '09]

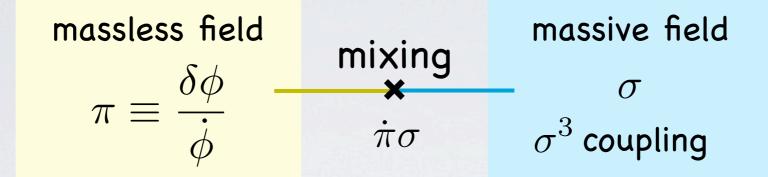


- can potentially give large non-Gaussianities

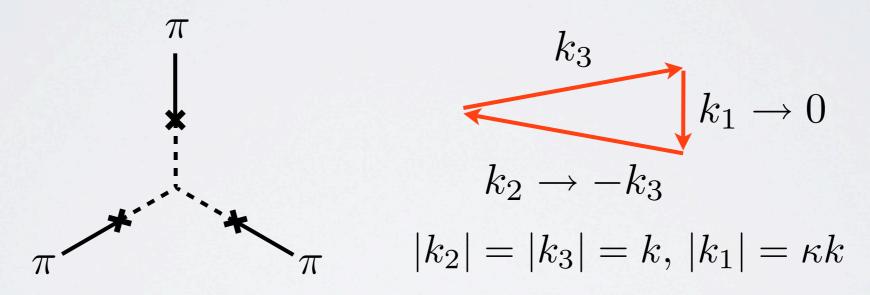


- intermediate shape between local and equilateral types

# quasi-single field inflation [Chen-Wang '09]



- can potentially give large non-Gaussianities



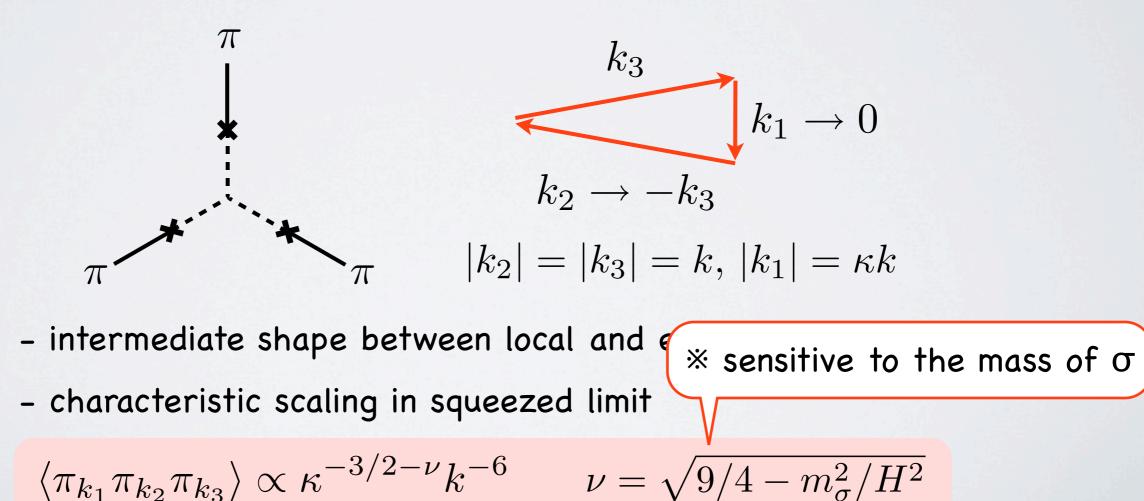
- intermediate shape between local and equilateral types
- characteristic scaling in squeezed limit

$$\langle \pi_{k_1} \pi_{k_2} \pi_{k_3} \rangle \propto \kappa^{-3/2 - \nu} k^{-6} \qquad \nu = \sqrt{9/4 - m_\sigma^2/H^2}$$

# quasi-single field inflation [Chen-Wang '09]



- can potentially give large non-Gaussianities



### Motivation

quasi-single field inflation:

- naturally realized in supergravity
- characteristic signatures in non-Gaussianities
   (between local & equilateral, scaling in squeezed limit)

### Motivation

quasi-single field inflation:

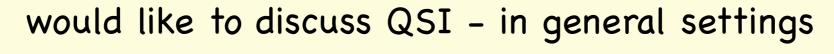
- naturally realized in supergravity
- characteristic signatures in non-Gaussianities
   (between local & equilateral, scaling in squeezed limit)

### would like to discuss QSI – in general settings – in a systematic way

### Motivation

quasi-single field inflation:

- naturally realized in supergravity
- characteristic signatures in non-Gaussianities
   (between local & equilateral, scaling in squeezed limit)



- in a systematic way

effective field theory approach!

4/10

### # effective field theory approach [Cheung et al '07]

time dependent background evolution during inflation (time-dependent vev: R(t),  $\phi_0(t)$  )

4/10

# effective field theory approach [Cheung et al '07]

time dependent background evolution during inflation  $f \xrightarrow{\text{spatial slicing}} (\text{time-dependent vev: } R(t), \phi_0(t))$  $\xrightarrow{} x^i$ 

# effective field theory approach [Cheung et al '07]

time dependent background evolution during inflation

r spatial slicing

(time-dependent vev: R(t) ,  $\phi_0(t)$  )

# effective field theory approach [Cheung et al '07]

time dependent background evolution during inflation

r spatial slicing

(time-dependent vev: R(t) ,  $\phi_0(t)$  )

>> spontaneous breakdown of time diffeo

% unbroken time-dep. spatial diffeo

$$\delta x^i = \epsilon^i(t,x^i)$$

# effective field theory approach [Cheung et al '07]

time dependent background evolution during inflation

r spatial slicing

(time-dependent vev: R(t) ,  $\phi_0(t)$  )

spontaneous breakdown of time diffeo

% unbroken time-dep. spatial diffeo

4/10

$$\delta x^i = \epsilon^i(t, x^i)$$

assuming relevant dof. during inflation, we would be able to construct effective action for inflation based on the unbroken time-dependent diffeo

# effective field theory approach [Cheung et al '07]

time dependent background evolution during inflation

c spatial slicing

(time-dependent vev: R(t) ,  $\phi_0(t)$  )

spontaneous breakdown of time diffeo

% unbroken time-dep. spatial diffeo

$$\delta x^i = \epsilon^i(t, x^i)$$

assuming relevant dof. during inflation, we would be able to construct effective action for inflation based on the unbroken time-dependent diffeo

advantages:

- systematic expansions in fluctuations and derivatives

4/10

# effective field theory approach [Cheung et al '07]

time dependent background evolution during inflation

r spatial slicing

(time-dependent vev: R(t) ,  $\phi_0(t)$  )

>> spontaneous breakdown of time diffeo

% unbroken time-dep. spatial diffeo

$$\delta x^i = \epsilon^i(t, x^i)$$

assuming relevant dof. during inflation, we would be able to construct effective action for inflation

based on the unbroken time-dependent diffeo

#### advantages:

- systematic expansions in fluctuations and derivatives
- simplification in the dynamics of Goldstone boson  $\boldsymbol{\pi}$

# effective field theory approach [Cheung et al '07]

time dependent background evolution during inflation

r spatial slicing

(time-dependent vev: R(t) ,  $\phi_0(t)$  )

>> spontaneous breakdown of time diffeo

% unbroken time-dep. spatial diffeo

4/10

$$\delta x^i = \epsilon^i(t, x^i)$$

assuming relevant dof. during inflation,

we would be able to construct effective action for inflation based on the unbroken time-dependent diffeo

#### advantages:

- systematic expansions in fluctuations and derivatives
- simplification in the dynamics of Goldstone boson  $\boldsymbol{\pi}$
- relations between physics and non-Gaussianities are clear!

# general action of quasi-single field inflation

relevant dof = three physical modes of graviton + additional massive scalar field  $\sigma$ 

# general action of quasi-single field inflation

relevant dof = three physical modes of graviton + additional massive scalar field  $\sigma$ 

schematically written as  $S = S_{\text{grav}} + S_{\sigma} + S_{\text{mix}}$ 

# general action of quasi-single field inflation

relevant dof = three physical modes of graviton + additional massive scalar field  $\sigma$ 

schematically written as  $S = S_{grav} + S_{\sigma} + S_{mix}$ 

ex. 
$$S_{\text{mix}} = \int d^4x \sqrt{-g} \left[ \beta_1(t) \delta g^{00} \sigma + \beta_2(t) \delta g^{00} \partial^0 \sigma + \beta_3(t) \partial^0 \sigma - (\dot{\beta}_3(t) + 3H\beta_3(t)) \sigma \right]$$

# general action of quasi-single field inflation

relevant dof = three physical modes of graviton + additional massive scalar field  $\sigma$ 

schematically written as  $S = S_{\text{grav}} + S_{\sigma} + S_{\text{mix}}$ 

ex. 
$$S_{\text{mix}} = \int d^4x \sqrt{-g} \left[ \beta_1(t) \delta g^{00} \sigma + \beta_2(t) \delta g^{00} \partial^0 \sigma + \beta_3(t) \partial^0 \sigma - (\dot{\beta}_3(t) + 3H\beta_3(t)) \sigma \right]$$
  
Stuckelberg method

$$S_{\text{mix}} = \int d^4x \, a^3 \left[ -2\beta_1 \dot{\pi}\sigma + (2\beta_2 - \beta_3) \dot{\pi}\dot{\sigma} + \beta_3 \frac{\partial_i \pi \partial_i \sigma}{a^2} \right]$$
$$-\beta_1 \left( \dot{\pi}^2 - \frac{(\partial_i \pi)^2}{a^2} \right) \sigma + 3\beta_2 \dot{\pi}^2 \dot{\sigma} - 2\beta_2 \frac{\partial_i \pi \partial_i \sigma}{a^2} \dot{\pi} - \beta_2 \frac{(\partial_i \pi)^2}{a^2} \dot{\sigma} + \dots \right]$$

# general action of quasi-single field inflation

relevant dof = three physical modes of graviton + additional massive scalar field  $\sigma$ 

schematically written as  $S = S_{\text{grav}} + S_{\sigma} + S_{\text{mix}}$ 

ex. 
$$S_{\text{mix}} = \int d^4x \sqrt{-g} \left[ \beta_1(t) \delta g^{00} \sigma + \beta_2(t) \delta g^{00} \partial^0 \sigma + \beta_3(t) \partial^0 \sigma - (\dot{\beta}_3(t) + 3H\beta_3(t)) \sigma \right]$$

$$S_{\text{mix}} = \int d^4x \, a^3 \left[ -2\beta_1 \dot{\pi}\sigma + (2\beta_2 - \beta_3)\dot{\pi}\dot{\sigma} + \beta_3 \frac{\partial_i \pi \partial_i \sigma}{a^2} \right. \\ \left. -\beta_1 \left( \dot{\pi}^2 - \frac{(\partial_i \pi)^2}{a^2} \right) \sigma + 3\beta_2 \dot{\pi}^2 \dot{\sigma} - 2\beta_2 \frac{\partial_i \pi \partial_i \sigma}{a^2} \dot{\pi} - \beta_2 \frac{(\partial_i \pi)^2}{a^2} \dot{\sigma} + \dots \right]$$

large non-Gaussianitis from mixings  $\beta_1$  and  $\beta_2$ 

 $\zeta \sim -H\pi$ 

Power spectrum

### # power spectrum

$$S_{\rm mix} = \int d^4x \, a^3 \left[ \frac{-2\beta_1 \dot{\pi} \sigma + (2\beta_2 - \beta_3) \dot{\pi} \dot{\sigma} + \beta_3 \frac{\partial_i \pi \partial_i \sigma}{a^2}}{\tilde{\beta}_3} \right]$$

Power spectrum

### # power spectrum

$$\begin{cases} S_{\text{mix}} = \int d^4x \, a^3 \left[ \underbrace{-2\beta_1 \dot{\pi}\sigma}_{\tilde{\beta}_1} + \underbrace{(2\beta_2 - \beta_3)}_{\tilde{\beta}_2} \dot{\pi} \dot{\sigma} + \underbrace{\beta_3}_{\tilde{\beta}_3} \frac{\partial_i \pi \partial_i \sigma}{a^2} \right] \\ \langle \zeta_{\mathbf{k}} \, \zeta_{\mathbf{k}'} \rangle = H^2 \, \langle \pi_{\mathbf{k}} \, \pi_{\mathbf{k}'} \rangle \\ & \stackrel{\sim}{\phantom{aaaaaa}} \underbrace{\mathbf{x}}_{\pi} \quad \mathbf{x}}_{\pi} \quad \mathbf{x}}}_{\pi} \quad \mathbf{x}}}}_{\pi} \quad \mathbf{x}}}_{\pi} \quad \mathbf{x}}}_{\pi} \quad \mathbf{x}}}_{\pi} \quad \mathbf{x}}}_{\pi} \quad \mathbf{x}}}}} x}}}_{\pi}}}_{\pi}} x}}_{\pi}} x}}}_{\pi}} x}}_{\pi}} x}}}_{\pi}}}}_{\pi}} x}}}_{\pi}}}x}}_{\pi}} x}}}_{\pi}} x}}_{\pi}} x}}_{\pi}} x}}}_{$$

Power spectrum

6/10

### # power spectrum

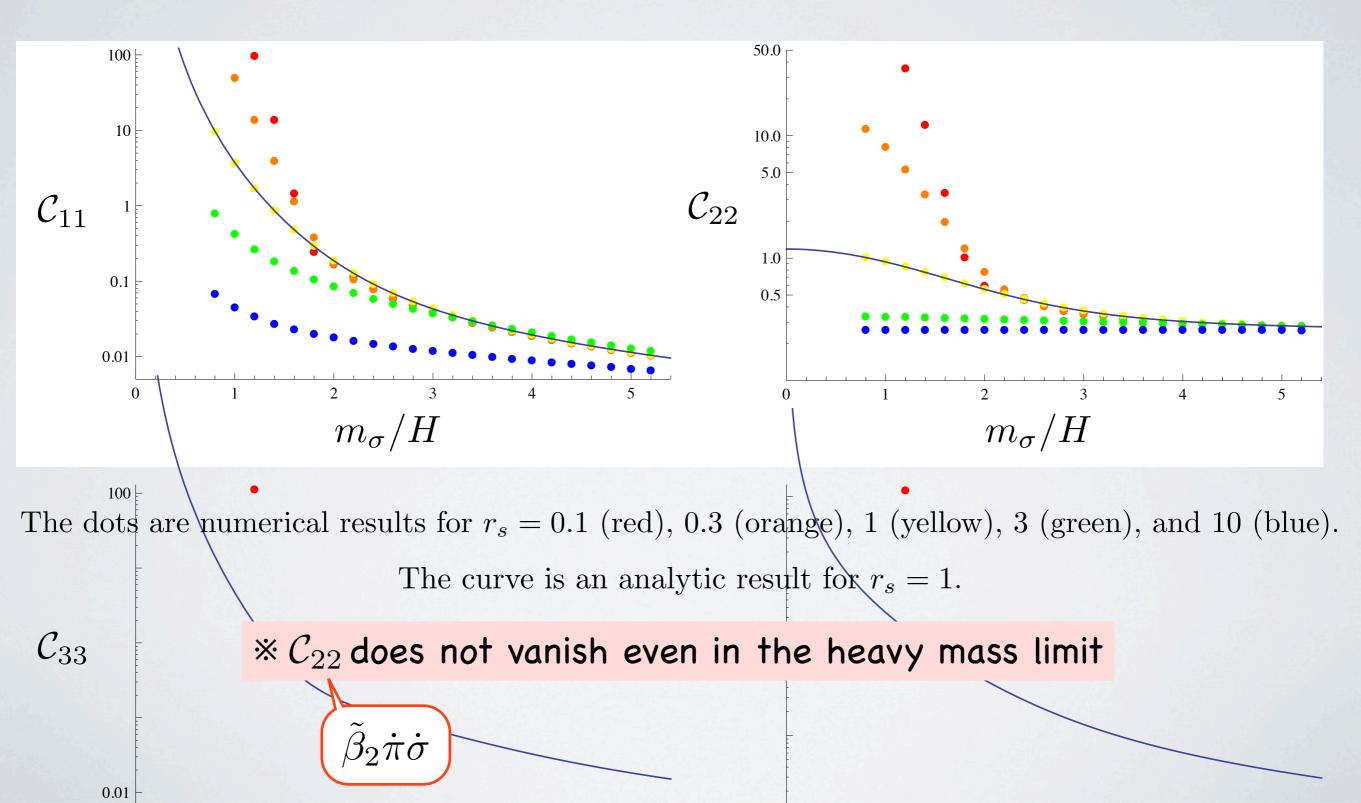
$$\begin{cases} S_{\text{mix}} = \int d^4x \, a^3 \left[ \underbrace{-2\beta_1 \dot{\pi}\sigma}_{\tilde{\beta}_1} + \underbrace{(2\beta_2 - \beta_3)}_{\tilde{\beta}_2} \dot{\pi} \dot{\sigma} + \underbrace{\beta_3}_{\tilde{\beta}_3} \frac{\partial_i \pi \partial_i \sigma}{a^2} \right] \\ \langle \zeta_{\mathbf{k}} \zeta_{\mathbf{k}'} \rangle = H^2 \langle \pi_{\mathbf{k}} \pi_{\mathbf{k}'} \rangle \\ & \overset{\sim}{\mathbf{x}}_{\pi} & \overset{\times}{\pi} & \overset{\times}{$$

$$\begin{split} \langle \zeta_{\mathbf{k}} \zeta_{\mathbf{k}'} \rangle &= (2\pi)^3 \delta^{(3)} (\mathbf{k} + \mathbf{k}') \frac{2\pi^2}{k^3} \mathcal{P}_{\zeta}(k) \quad \text{deviation from single field} \\ \mathcal{P}_{\zeta}(k) &= \frac{H^2}{8\pi^2 M_{\text{Pl}}^2 \epsilon \, c_\pi} \left[ 1 + \frac{\pi}{4\alpha_\sigma^2} \frac{c_\pi^2}{M_{\text{Pl}}^2 (-\dot{H})} \left( \frac{\tilde{\beta}_1^2}{H^2} \, \mathcal{C}_{11} + \tilde{\beta}_2^2 \, \mathcal{C}_{22} + \tilde{\beta}_3^2 \, \mathcal{C}_{33} \right. \\ &+ \frac{\tilde{\beta}_1}{H} \, \tilde{\beta}_2 \, \mathcal{C}_{12} + \frac{\tilde{\beta}_1}{H} \, \tilde{\beta}_3 \, \mathcal{C}_{13} + \tilde{\beta}_2 \, \tilde{\beta}_3 \, \mathcal{C}_{23} \right) \right] \end{split}$$

### Power spectrum

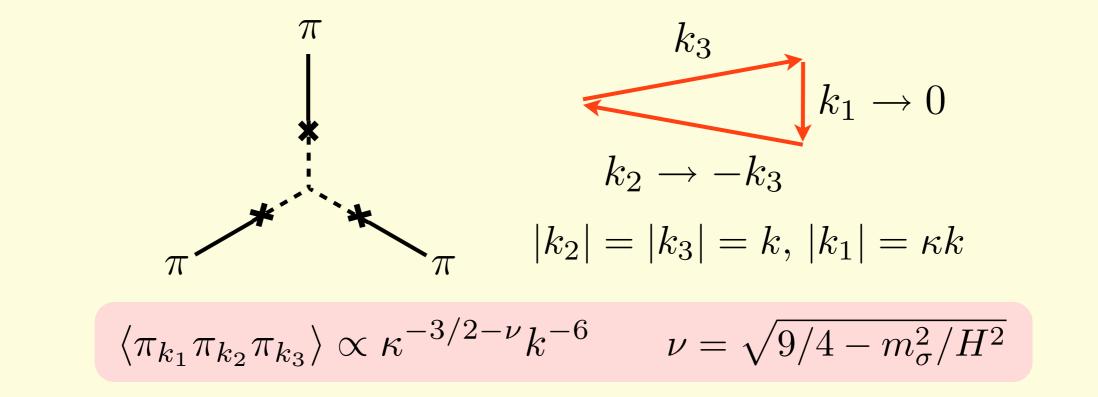
7/10





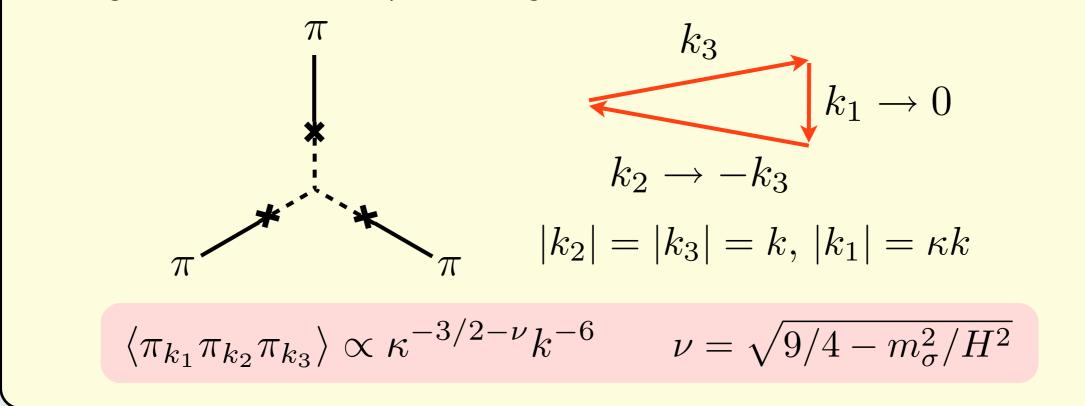
# three point functions in the squeezed limit

- original models of quasi-single field inflation



# three point functions in the squeezed limit

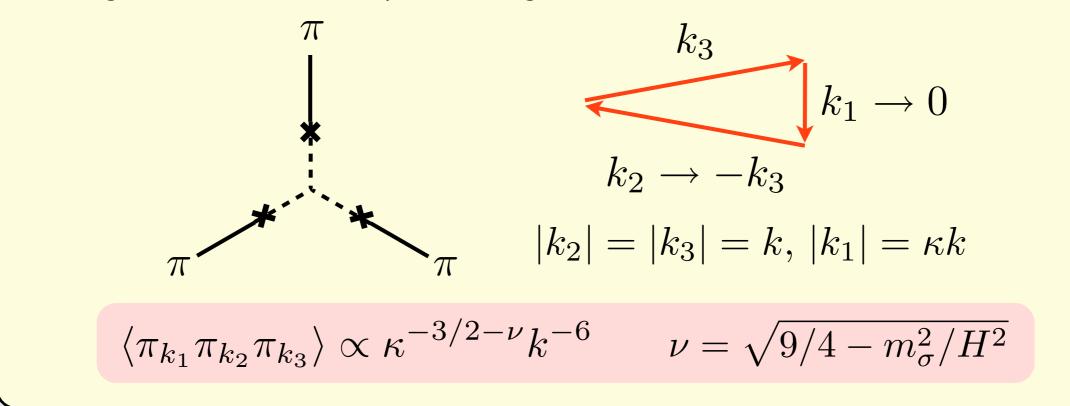
original models of quasi-single field inflation



- for general mixing and cubic couplings

# three point functions in the squeezed limit

original models of quasi-single field inflation

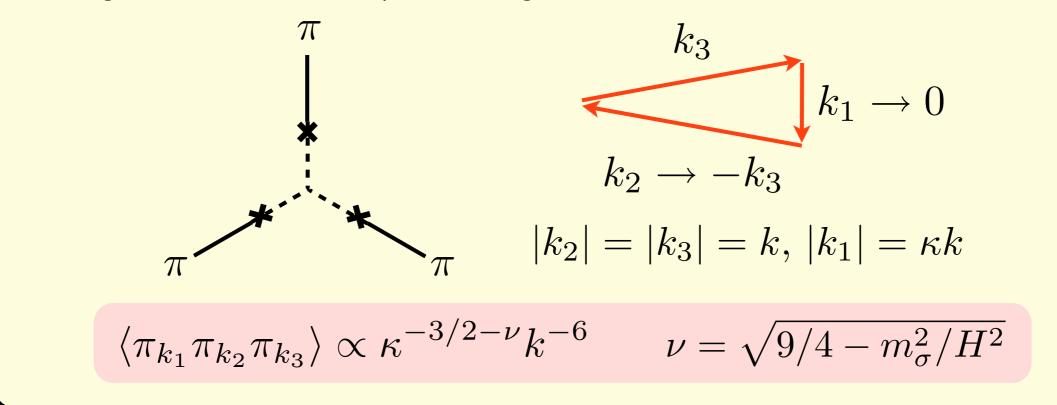


- for general mixing and cubic couplings

① scaling does not depend on details of mixing

# three point functions in the squeezed limit

original models of quasi-single field inflation



- for general mixing and cubic couplings

1 scaling does not depend on details of mixing

2 determined only from cubic interaction in the diagram

#### 9/10

| three point vertices                                                                                                                                                                                | momentum dependence                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| $\dot{\pi}^3,  \dot{\pi} \frac{(\partial_i \pi)^2}{a^2}$                                                                                                                                            | $\kappa^{-1}k^{-6}$                                                                                                                                |
| $\dot{\pi}^2\sigma,  \dot{\pi}\dot{\sigma},  \dot{\pi}\sigma^2,  \dot{\pi}\sigma\dot{\sigma},  \dot{\pi}\dot{\sigma}^2,  \ddot{\pi}\sigma\dot{\sigma},$                                             | $\int \kappa^{-3/2-\nu} k^{-6} \qquad \text{for}  m_{\sigma} < \frac{3}{2}H$                                                                       |
| $\sigma^3,  \sigma^2 \dot{\sigma},  \sigma \dot{\sigma}^2,  \sigma \frac{(\partial_i \sigma)^2}{a^2},  \dot{\sigma}^3,  \dot{\sigma} \frac{(\partial_i \sigma)^2}{a^2}$                             | $\left\{ \begin{array}{ll} \kappa^{-3/2} k^{-6} \sin[i\nu \log \kappa + \delta_{\nu}] & \text{for}  m_{\sigma} > \frac{3}{2}H \end{array} \right.$ |
| $\dot{\pi} \frac{\partial_i \pi \partial_i \sigma}{a^2}$                                                                                                                                            | $\kappa^{-2}k^{-6}$                                                                                                                                |
| $\frac{(\partial_i \pi)^2}{a^2}\sigma,  \frac{(\partial_i \pi)^2}{a^2}\dot{\sigma},  \frac{\partial_i \pi \partial_i \sigma}{a^2}\sigma,  \frac{\partial_i \pi \partial_i \sigma}{a^2}\dot{\sigma}$ | $\begin{cases} \kappa^{-3/2-\nu}k^{-6} & \text{for}  m_{\sigma} < \sqrt{2}H \\ \kappa^{-2}k^{-6} & \text{for}  m_{\sigma} > \sqrt{2}H \end{cases}$ |
|                                                                                                                                                                                                     | $\int \kappa^{-2} k^{-6} \qquad \text{for}  m_{\sigma} > \sqrt{2}H$                                                                                |
| $\dot{\pi} \frac{(\partial_i \sigma)^2}{a^2}$                                                                                                                                                       | $\begin{cases} \kappa^{-1/2-\nu}k^{-6} & \text{for}  m_{\sigma} < \sqrt{2}H \\ \kappa^{-1}k^{-6} & \text{for}  m_{\sigma} > \sqrt{2}H \end{cases}$ |
|                                                                                                                                                                                                     | $\left  \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $                                                                          |

non-trivial scaling in the squeezed limit when mixing is relevant!

 $\nu = \sqrt{9/4 - m_{\sigma}^2/H^2}$   $0 < \nu < 3/2$  or  $\nu =$  pure imaginary

### Summary and prospects

# summary

### applied EFT approach to QSI

- systematic expansions in fluctuations and derivatives
- simplification of action for  $\pi$  in decoupling regime

relation between physics & non-Gaussianities is clear
calculated power spectrum for constant mixing
discussed scaling of 3-pt functions in squeezed limit
sensitive to # of fields and their mass
also discussed effects of heavy particles, sharp turning

#### # prospects

full non-Gaussianities, detectability, ...

EFT for sugra based inflation,

more on sharp turning, ...

# THANK YOU!!