# CMB cosmology

#### Yvonne Y. Y. Wong The University of New South Wales

CosPA 2017, Kyoto, December 11 – 15, 2017

#### 52 years of CMB measurements...

**CMB** = thermal relic radiation left over from ~400,000 years post big bang, first observed in 1965.



Arno Penzias & Robert Woodrow Wilson @ the Holmdel Horn Antenna

© 2004 Thomson - Brooks/Cole

The most perfect blackbody ever measured...



#### 3 generations of space-based anisotropies probes...





### CMB anisotropies as seen by Planck 2015...

#### **Temperature fluctuations**



#### **Polarisation fluctuations**

(from Thomson scattering of photons off electrons)



### Don't forget the ground-based/balloon experiments...



BOOMERanG (flat spatial geometry 1999)



DASI (polarisation anisotropies 2002)





Plus many others...

... and SPT (damping tail 2011)

#### CMB observables: what can be extracted from maps...



#### 2-point correlation: angular power spectra...

Ade et al. [Planck] 2015





# A combination of: Photon-baryon acoustic oscillations frozen on the LSS. Projection effects. Late-time secondaries, e.g., reionisation, ISW, lensing. Spatial geometry

#### CMB observables: what can be extracted from maps...



#### Lensing...



## Lensing potential power spectrum...



Galactic North

Galactic South

#### Lensing of polarisation...

#### See next 2 talks + CMB parallel session this afternoon

Lensing transfers power from the E-mode to the B-mode.



#### CMB observables: what can be extracted from maps...



## Status 2017

### Vanilla ACDM still rules...



#### Constraints on ACDM parameters...

Ade et al. [Planck] 2015





There are many ways in which the  $\Lambda$ CDM parameter space can be extended:

#### Initial conditions:

- Primordial gravitational waves
- Running of scalar spectral index
- Primordial non-Gaussianity
- Isocurvature modes
- ...
- Energy content:
  - Nonzero neutrino mass
  - Extra relativistic particle species
  - Dynamical dark energy
  - Interacting dark sector (DM-nu, DM-DR, nu-nu, DM-DE, DE-nu, etc.)
  - Dark matter decay/annihilation

- ..

• Nonzero spatial curvature

Currently no evidence for any of these from CMB data alone...



#### Flies in the ointment: $2-3\sigma$ tensions...

- Hubble parameter  $H_0$ : Planck-inferred value lower than local HST measurement.
- Small-scale RMS fluctuation σ<sub>8</sub>: Planck CMB prefers a higher value than galaxy cluster count and galaxy shear from CFHTLenS.

Ade et al. [Planck] 2015

| Parameter                   | [1] Planck TT+lowP  | [2] Planck TE+lowP | [3] Planck EE+lowP        | [4] Planck TT, TE, EE+lowP | $([1] - [4])/\sigma_{[1]}$ |
|-----------------------------|---------------------|--------------------|---------------------------|----------------------------|----------------------------|
| τ                           | $0.078 \pm 0.019$   | $0.053 \pm 0.019$  | $0.059^{+0.022}_{-0.019}$ | $0.079 \pm 0.017$          | -0.1                       |
| $\ln(10^{10}A_{\rm s})$     | $3.089 \pm 0.036$   | $3.031 \pm 0.041$  | $3.066^{+0.046}_{-0.041}$ | $3.094 \pm 0.034$          | -0.1                       |
| <i>n</i> <sub>s</sub>       | $0.9655 \pm 0.0062$ | $0.965 \pm 0.012$  | $0.973 \pm 0.016$         | $0.9645 \pm 0.0049$        | 0.2                        |
| $H_0$                       | $67.31 \pm 0.96$    | $67.73 \pm 0.92$   | $70.2 \pm 3.0$            | $67.27 \pm 0.66$           | 0.0                        |
| $\Omega_{\rm m}$            | $0.315 \pm 0.013$   | $0.300 \pm 0.012$  | $0.286^{+0.027}_{-0.038}$ | $0.3156 \pm 0.0091$        | 0.0                        |
| $\sigma_8$                  | $0.829 \pm 0.014$   | $0.802 \pm 0.018$  | $0.796 \pm 0.024$         | $0.831 \pm 0.013$          | 0.0                        |
| $10^9 A_{\rm s} e^{-2\tau}$ | $1.880 \pm 0.014$   | $1.865 \pm 0.019$  | $1.907 \pm 0.027$         | $1.882 \pm 0.012$          | -0.1                       |

HST

Planck SZ clusters

$$\sigma_8(\Omega_m/0.27)^{0.3} = 0.782 \pm 0.01$$

 $H_0 = 73.24 \pm 1.74 \text{ km s}^{-1} \text{ Mpc}^{-1}$ 

Riess et al. 2016

CFHTLenS galaxy shear  $\sigma_8 (\Omega_m/0.27)^{0.46} = 0.774 \pm 0.04$ Heymans et al. 2013

## The $N_{eff}$ -H<sub>0</sub> degeneracy...

A larger  $N_{\rm eff}$  does bring the Planck-inferred H<sub>0</sub> into better agreement with the HST measurement of the local expansion rate .



## Other oddities...

#### Lack of power on large scales



#### Multipole l

# Hemispherical difference in power & the cold spot

Already present in WMAP; Planck confirms that these are not due to data processing



5

10

15

20

25

#### Quick recap...

- Not much has changed since 2016 in terms of ACDM parameter constraints.
  - No evidence for beyond ACDM physics.
- **2-3** $\sigma$  tensions between CMB-inference, and local H<sub>0</sub> measurements and  $\sigma_8$  determination from cosmic shear are still there.
  - These could be hinting at beyond ACDM physics...
  - Modifications to the neutrino/dark radiation sector are a popular explanation, but likely not the only possibility.

CMB spectral distortions...

The most perfect blackbody ever measured??



#### History of the CMB...



#### History of the CMB...





μ-, y-, and r-distortions...







#### COBE FIRAS constraints on distortions...



## Spectral distortions from dissipation of sound waves...

Sunyaev & Zel'dovich 1970

Spectral distortions are also expected within standard  $\Lambda$ CDM.

- Photon diffusion mixes blackbodies of different temperatures.
  - → Spectral distortions (unless thermalisation processes are efficient)
- ACDM prediction:

 $\mu = O(10^{-8})$ 

Chluba, Khatri, Sunyaev, ... 2012--



#### Spectral distortions as a probe of small-scales...



Khatri & Sunyaev 2013

#### Energy injection rate...

Fractional energy injection per unit redshift in  $\Lambda$ CDM:



#### Energy injection rate...

Fractional energy injection per unit redshift in  $\Lambda$ CDM and beyond:



+ new dissipation channel (e.g., photon-DM scattering)

e.g., DM-neutrino elastic scattering...



Diacoumis & Y<sup>3</sup>W 2017

e.g., DM-neutrino elastic scattering...



Diacoumis & Y<sup>3</sup>W 2017



- Precision cosmological observations of the CMB and non-CMB probes allow us to explore the robustness of the assumptions underpinning ACDM.
  - Currently no evidence for physics beyond ACDM from CMB data alone.
  - However, several persistent 2-3σ tensions with non-CMB data could be hinting at something new (or just unresolved systematics).
- CMB spectral distortions offer a novel way to probe small-scale fluctuations at early times.
  - Potentially interesting for inflation physics, dark matter physics, and possibly more.