

中國科旨院暗約原口空间天生事出实验室

DSA Key Laboratory of Dark Matter and Space Astronomy, CAS

白書漫遊

International Symposium on Cosmology and Particle Astrophysics 2017 Yukawa Institute for Theoretical Physics, Kyoto Univ., Dec. 11–15, 2017

DAMPE mission and its first results

Yi-Zhong Fan

Purple Mountain Observatory (on behalf of the DAMPE collaboration)

The collaboration

- PI of DAMPE: Jin Chang from PMO
- CHINA
 - Purple Mountain Observatory, CAS, Nanjing
 - University of Science and Technology of China, Hefei
 - Institute of High Energy Physics, CAS, Beijing
 - Institute of Modern Physics, CAS, Lanzhou
 - National Space Science Center, CAS, Beijing
- ITALY
 - INFN Perugia
 - INFN Bari
 - INFN Lecce
- SWITZERLAND
 - University of Geneva

- Background
- DAMPE mission
- First Results

Dark matter

- Compelling astrophysical evidence for dark matter
- New particle or modified gravity?
- Three detection methods

DAMPE Dark matter indirect detection

Dark matter particles may annihilate and then generate pairs of particles and anti-particles (gamma-rays, electrons/positrons, proton and antiprotons), see e.g., Bergström & Snellman 1988, Turner & Wilczek 1990

Dark matter indirect detection

DM signal in anti-particles (AMS-02 like detectors): lower background

Electrons: relatively small contrast between the electron and positron flux

Gamma-rays and neutrinos: trace the source

Possible DM signal in y-rays and electrons

- The γ-ray line
- Continual γ-ray emission spatially correlated with the DM distribution
- Electrons with unusual spectrum

Some previous/current experiments and hints

DAMPE DArk Matter Particle Explorer

Scientific objectives:
 (a)Probing the nature of dark matter
 (b)Understanding acceleration and propagation of cosmic rays
 (c)Studying γ-ray emission from Galactic and extragalactic sources

The payload

- Charge measurement (dE/dx in PSD, STK and BGO)
- Pair production and tracking (STK and BGO)
- Precise energy measurement (BGO bars)
- Hadron rejection (BGO and neutron detector)

Flight Model: four sub-detectors

STK: IHEP, UG, INFN Perugia

BGO: USTC & PMO

Signals for different particles

Beam test @ CERN

Expected performance

Parameter	Value
Energy range of gamma-rays/electrons	5 GeV to 10 TeV
Energy resolution(electron and gamma)	1.5% at 800 GeV
Energy range of protons/heavy nuclei	50 GeV to 500 TeV
Energy resolution of protons	40% at 800 GeV
Eff. area at normal incidence (gamma)	1100 cm ² at 100 GeV
Geometric factor for electrons	$0.3 \text{ m}^2 \text{ sr above } 30 \text{ GeV}$
Photon angular resolution	0.1 degree at 100 GeV
Field of View	1.0 sr

Expected performance

DARK MATTE

Expected performance

DAMPE mission

DAMPE mission

- Launch: December 17th 2015, CZ-2D rocket
 - Total weight ~1850 kg, power consumption ~640 W
 - Scientific payload ~1400 kg, ~400 W
 - Lifetime > 3 year

- Altitude: 500 km
- Inclination: 97.4065°
- Period: 95 minutes
- Orbit: sun-synchronous
- 16 GB/day downlink

On-orbit trigger rate

~60 Hz average trigger rate
→100GB (H.L.)/day on ground (about 5 M events)

BGO on-orbit calibration: MIPs

DARK MATTER

(DAMPE collaboration. 2018, to be submitted to Astropart. Phys.) 20

Satbility of on-orbit performance

DARK MATTER

On-orbit performance: Charge measurement by PSD

On-orbit performance: energy measurement by BGO

The ratio of the energies reconstructed with positive and negative side readout data of BGO crystals, for CRE candidates with deposit energy of 0.5-1.0 TeV (DAMPE collaboration. 2017, Nature, 552, 63) 23

On-orbit performance: Absolute energy scale

24

DARK MATTE

RTICLE EX

On-orbit performance: e/p separation

For events with deposit energy of 0.5-1.0 TeV; the proton contamination fraction is found to be <3% below 1TeV and <6% in the energy range of 1-2 TeV.

(DAMPE collaboration. 2017, Nature, 552, 63)

Summary of current data

Full sky survey: 4 times

3.5 billion CRs (~5 million/day)

DAMPE Event: ~5 TeV electron candidate

Z-X View Z-Y View		
	+05 +04 +03 +03 MW	
<< First		
Colors: 01 02 03 04 05 06 07 08		
Stereo Effects: Red Cyan Red Blue Active Passive No Stereo		
Advanced Show: Show Trajectory Start Animation Continuous Animation		
File Name(s): electron_above500GeV.root		
Event Number: 525		
Time Point: 09:06:04.660, 27/04/2016		
Total Energy: 4731.992000 GeV		
Track Status: Has BGO Track: Yes. Has Global Track: Yes.		
Direction: Theta: 29.3 deg, Phi: -103.4 deg		

AMPE First results: gamma-ray sky map

(The gamma-ray identification of DAMPE is in Xu et al. 2018, RAA)

First results: GeV outbursts

DAMPErirst results: proton, helium spectra

First results: CRE spectrm

Some high energy CRE spectra

Error bars: systematic and statistical uncertainties added in quadrature for direct measurements. For H.E.S.S the grey band represents its systematic errors apart from the approximately 15% energy scale uncertainty. 32

DAMPE CRE data: modeling

DM model can reproduce the data, and the constraints on the parameters have been significantly improved (Yuan et al. arXiv:1711.10989).

The simplest DM models for low energy CRE anomaly are in tension with other data (Yuan et al. arXiv:1711.10989). More complicated DM model? Astrophysical source?

The detector

- Large geometric factor instrument (0.3 m² sr for electrons)
- Precision Si-W tracker (40 μm , 0.2 $^\circ$)
- Thick calorimeter (32 X_0 , $\sigma_{\text{E}}/\text{E}$ better than 1.5% above 50 GeV for e/ $\!\gamma$, (20~35)% for hadrons)
- "Mutiple" charge measurements (0.1-0.3 e resolution)
- e/p rejection power ~10⁵ (topology alone, higher with neutron detector)

Launch and performances

- Succesfull launch on Dec 17, 2015
- On orbit operation steady and with high efficiencies
- · Absolute energy calibration by using the geomagnetic cut-off
- Absolute pointing cross check by use of the photon map
- The first CRE spectrum has been published in Dec. 2017

Some members and partners

Thank you!

Back up

Flight model: environmental tests

DARK

ARTICLE

MAT

DAMIE

Beam test @ CERN

METHODS

Discrimination between electrons and protons. The method of electron selection in this work relies on the differences in the development of showers initiated by protons and electrons^{23,31,32}. The procedure is as follows. First, we search for events passing through the entire BGO calorimeter. We select events with hit positions from -28.5 cm to 28.5 cm for the top layer and -28 cm to 28 cm for the bottom layer (each BGO bar lies between -30 cm and 30 cm). Second, we calculate the shower spread, expressed by the energy-weighted root-mean-square value of hit positions in the calorimeter. The root-mean-square value of the *i*th layer is calculated as:

$$RMS_{i} = \sqrt{\frac{\sum_{j} (x_{j,i} - x_{c,i})^{2} E_{j,i}}{\sum_{j} E_{j,i}}}$$
(1)

where $x_{j,i}$ and $E_{j,i}$ are the coordinates and deposited energy of the *j*th bar in the *i*th layer, and $x_{c,i}$ is the coordinate of the shower centre of the *i*th layer. Figure 1 shows the deposited energy fraction in the last BGO layer (\mathcal{F}_{last}) versus the total root-mean-square value of all 14 BGO layers (that is, $\sum_i RMS_i$). We can see that electrons are well separated from protons. Note that in Fig. 1 and Extended Data Fig. 1, heavy ions have already been effectively removed by selection through the plastic scintillator detector, on the basis of the charge measurement.

For a better evaluation of the electron/proton discrimination capabilities, we introduce a dimensionless variable, ζ , defined as

$$\zeta = \mathcal{F}_{\text{last}} \times (\Sigma_i \text{RMS}_i/\text{mm})^4 / (8 \times 10^6)$$
(2)

First results: CRE spectrm

