What can we learn from astrophysical neutrinos?

Shun Zhou (11HEP, Beijing)

ELECT

CosPA 2017 @ Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 2017-12-11

R. Davis Jr. M. Koshiba

Nobel Prize in 2002 "for the detection of **cosmic neutrinos**"

R. Davis Jr. M. Koshiba **Nobel Prize in 2002** "for the detection of **cosmic neutrinos**"

T. Kajita A.B. McDonald

Nobel Prize in 2015 "for the discovery of neutrino oscillations, which shows that **neutrinos have mass**"

R. Davis Jr. M. Koshiba **Nobel Prize in 2002** "for the detection of **cosmic neutrinos**"

T. Kajita A.B. McDonald

Nobel Prize in 2015 "for the discovery of neutrino oscillations, which shows that neutrinos have mass"
 Discovery of PeV cosmic neutrinos at IceCube a review by E. Waxman

Outline

from the discovery in 1987 to precision measurements of supernova neutrinos

- Supernova (SN) Neutrinos
- Detection of Galactic SN v's
- Learn more from SN v's

Outline

from the discovery in 1987 to precision measurements of supernova neutrinos

- Supernova (SN) Neutrinos
- Detection of Galactic SN v's
- Learn more from SN v's

from the UHE cosmic neutrinos to ULE cosmic neutrinos from Big Bang

- Cosmic v Background (CvB)
- Detection of CvB@PTOLEMY
- Physics/Cosmology with CvB

Galactic SN 1054

Distance: 6500 light years (2 kpc) Center: Neutron Star (R~30 km) Progenitor : M ~ 10 solar masses

Red : Optical (Hubble) Blue : X-Ray (Chandra)

Stellar Collapse and SN Explosion

Grav. binding energy $E_h \approx 3 \times 10^{53}$ erg 99% Neutrinos 1% Kinetic energy of explosion (1% of this into cosmic rays) 0.01% Photons, outshine host galaxy

Proto-Neutron star: $\rho \sim \rho_{nuc} = 3 \times 10^{14} \text{ g cm}^{-3}$ T $\sim 30 \text{ MeV}$

1

Detection of SN Neutrinos

Scholberg, Supernova-relevant neutrino interactions

@SNOBS 2017

Super-Kamiokande

Hyper-Kamiokande

LAr-TPC DUNE

Summary of SN Neutrino Detectors

Detector	Туре	Location	Mass (kton)	Events @ 10 kpc	Status Scholberg @SNOB	S 20 [,]
Super-K	Water	Japan	32	8000	Running	
LVD	Scintillator	Italy	1	300	Running	
KamLAND	Scintillator	Japan	1	300	Running	
Borexino	Scintillator	Italy	0.3	100	Running	
IceCube	Long string	South Pole	(600)	(10 ⁶)	Running	
Baksan	Scintillator	Russia	0.33	50	Running	
HALO	Lead	Canada	0.079	20	Running	
Daya Bay	Scintillator	China	0.33	100	Running	
NOvA	Scintillator	USA	15	3000	Running	
MicroBooNE	Liquid argon	USA	0.17	17	Running	
SNO+	Scintillator	Canada	1	300	Under construction	
DUNE	Liquid argon	USA	40	3000	Future	
Hyper-K	Water	Japan	540	110,000	Future	
JUNO	Scintillator	China	20	6000	Under construction	
PINGU/GEN-2	Long string	South pole	(600)	(106)	Future	

Current & Future Scintillator-based Detectors

LVD, 1 kt

KamLAND, 1 kt

Borexino, 0.3 kt

Daya Bay, 0.16 kt

SNO+, 1 kt

<section-header>

MiniBooNE, 0.7 kt

Baksan, 0.33 kt

LENA, 50 kt

JUNO, 20 kt

The JUNO Experiment

The JUNO Experiment

- 20 kiloton LS detector
- 3% energy resolution@ 1 MeV
- 700 m underground
- 18,000 20" +25,000 3" PMTs
- 53 km to the NPPs

	KamLAND	Borexino	JUNO
LS mass	1 kt	0.3 kt	20 kt
Energy Resolution	6%/√E	5%/√E	3%/√ E
Light yield	250 p.e./MeV	511 p.e./MeV	1200 p.e./MeV

SN Models & Neutrino Spectra

SN Neutrino Event Rates

SN Neutrinos @ LS Detectors

10

Reaction channel	Interaction type	Sensitive to	 Elastic v-p scattering important 	
$\overline{ u}_e + p ightarrow e^+ + n$ CC		$\overline{ u}_e$	Advantage of LS: low threshold	
$oldsymbol{ u}+oldsymbol{p} ightarrowoldsymbol{ u}+oldsymbol{p}$	NC	$\boldsymbol{\nu}_{x}$	Beacom, Farr, Vogel, PRD, 02;	
$ u + e^- ightarrow v + e^-$	CC+NC	ν_e	Dasgupta, Beacom, PRD, 11	
$\overline{oldsymbol{ u}}_e + {}^{12}{f C} o e^+ + {}^{12}{f B}$ (14.39 MeV, 20 ms)	CC	$\overline{ u}_e$	Event SpectraAverage E $(v_e, \overline{v}_e, v_x)$ @ JUNO(12, 14, 16) MeV]
$ u_e + {}^{12}\text{C} ightarrow e^- + {}^{12}\text{N} $ (17.34 MeV, 11 ms)	CC	$ u_e$	10 ⁵ Lu, Li, Zhou, PRD, 16 ${}^{12}C \text{ NC}, E_v^{\text{th}} = 15.1 \text{ MeV}$	
$\mathbf{v} + {}^{12}\mathbf{C} \rightarrow \mathbf{v} + {}^{12}\mathbf{C}^*$	NC	$\boldsymbol{\nu}_{x}$	10' $E_{v}^{13}C NC, E_{v}^{th} = 7.5 MeV$ $B_{v}^{b}, E_{v}^{th} = 1.8 M_{eV}$	
Natural abundance of ¹ Fukugita <i>et al.</i> , PLB, 90	¹³ C is about 1.1% ; <mark>Suzuki <i>et al</i>., PR</mark>	E ^q qN/qE ^q	10^{3} 10^{2} $\nu - e ES$ $E_{v}^{\text{th}} = 3.7 \text{ MeV}$ NeN	
Reaction channel	Interaction type	Sensitive to	10 [14.4 MeV	-
$\overline{\nu}_e + {}^{13}\mathrm{C} \rightarrow e^+ + {}^{13}\mathrm{B}$	CC	$\overline{ u}_e$	$1 = \frac{17.3 \text{ Me} + 17.3 \text{ Me} + 17.3 \text{ Me} + 128 \text{ CC}}{128 \text{ CC}} = \frac{17.3 \text{ Me} + 17.3 $	
ν_e + ¹³ C $\rightarrow e^-$ + ¹³ N	CC	$ u_e$		Ź
$\mathbf{v} + {}^{13}\mathbf{C} \rightarrow \mathbf{v} + {}^{13}\mathbf{C}^*$	NC	$\boldsymbol{\nu}_{x}$	0.2 1 10 20 E _d [MeV]	50

Elastic v-p Scattering in LS Detectors

Beacom, Farr, Vogel, PRD, 02; Dasgupta, Beacom, PRD, 11; Lu, Li, Zhou, PRD, 16

Quenching effects on the proton recoil energy $T_p \le 2 E^2/m_p$

• Elastic v-p scattering important

SN Neutrinos @ LS Detectors

12

Channel		0	Number of SN Neutrino Events at JUNO		Detection channels	ν Flavors	Efficiency	Backgrounds	Systemati	ics	
Channel	тур	e	No Oscillations	Normal Ordering	Inverted Ordering	IBD	$\overline{ u}_e$	95%	None	Detection	2%
$\overline{\nu}_e + p \to e^+ + n$	CC		4573	4775	5185	12C-CC	$\overline{\nu}_{\rm o}$ and $\nu_{\rm o}$	90%	None	Detection	2%
			1578	1578	1578			0070		Detection	-70
$\nu + p \rightarrow \nu + p$	ES	$ u_e$	107	354	278					Detection	2%
	Ľю	$\overline{ u}_e$	179	214	292	$p \mathrm{ES}$	$\overline{\nu}_e, \nu_e \text{ and } \nu_x$	99%	$e \mathrm{ES}$	Cross section	20%
		$ u_x$	1292	1010	1008					$k_{ m B}$	3%
			314	316	316	eES	$\overline{\nu}_e, \nu_e \text{ and } \nu_x$	99%	13 N-CC+IBD+pES	Detection	2%
$\nu_e + e \rightarrow \nu_e + e$	ES	$ u_e$	157	159	158				e ES+IBD	Detection	2%
		$\overline{ u}_e$	61	61	62	13 N-CC	$ u_e$	100%		Cross section	2007
		$ u_x$	96	96	96					Cross section	20%
$\nu_e + {\rm ^{12}C} \rightarrow e^- + {\rm ^{12}N}$	CC		43	134	106	12 C-NC	$\overline{\nu}$ ν and ν	100%	eES+IBD	Detection	2%
$\overline{\overline{\nu}_e + {}^{12}\mathrm{C}} \rightarrow e^+ + {}^{12}\mathrm{B}$	CC	!	86	98	126		ν_e, ν_e and ν_x	10070		Cross section	20%
			352	352	352	130 NO	$\overline{\nu}_e, \nu_e { m and} \nu_x$	100%	e ES+IBD	Detection	2%
$u \pm {}^{12}C \rightarrow u \pm {}^{12}C^*$	NC	$ u_e $	27	76	61	¹³ C-NC				Cross section	20%
	110	$\overline{ u}_e$	43	50	65	• IBD for \overline{v}	\overline{i} + sub-	leadin	a effects fro	om ¹² C C	<u> </u>
		$ u_x$	282	226	226		e Sub				
$\nu_e + {\rm ^{13}C} \rightarrow e^- + {\rm ^{13}N}$	CC		19	29	26	• Elastic v-	e scatte	ring fo	or v_e + ¹² C C	C	
		$3/2^{-}(5/2^{-})$) 23(15)	23(15)	23(15)	• Elastic v-	p scatte	rina fa	or v_{μ} + eES		
	NC	$ u_e$	3(1)	4(3)	4(2)		p searce				
$\nu + -0 \rightarrow \nu + -0$	NU	$\overline{ u}_e$	3(2)	4(2)	4(3)	• A global	analysis	of all	reaction cha	annels?	
		$ u_x$	17(12)	15(10)	15(10)	Laha <i>et a</i>	<i>.</i> , 1412.84	425; Lu	et al., PRD, 2	2016	

SN Neutrinos @ LS Detectors

Test of Energy Equipartition Hypothesis

Including only the MSW matter effects in the SN

For collective flavor conversions, talk by M.R. Wu

Total Gravitational Binding Energy

Including only the MSW effects in the SN, and fixing the spectral indices at $\gamma = 3$

With a high-statistics measurement of a galactic SN: time & energy spectra, all flavors, ...

• More works need to be done: collective flavor conversions, explosion mechanisms, ...

Formation of Cosmic v Background

v in thermal equilibriumhigh temperature

$\begin{array}{l} \nu_{\alpha}\nu_{\beta} \leftrightarrow \nu_{\alpha}\nu_{\beta} \\ \nu_{\alpha}\overline{\nu}_{\beta} \leftrightarrow \nu_{\alpha}\overline{\nu}_{\beta} \\ \nu_{\alpha}e^{-} \leftrightarrow \nu_{\alpha}e^{-} \\ \nu_{\alpha}\overline{\nu}_{\alpha} \leftrightarrow e^{+}e^{-} \\ e^{+}e^{-} \leftrightarrow \gamma\gamma \end{array}$

 $\textbf{T}_{\nu}=\textbf{T}_{e}=\textbf{T}_{\gamma}$

Formation of Cosmic v Background

□ v in thermal equilibrium@ high temperature

16

$\begin{array}{ccc} \nu_{\alpha}\nu_{\beta} \iff \nu_{\alpha}\nu_{\beta} \\ \nu_{\alpha}\overline{\nu}_{\beta} \iff \nu_{\alpha}\overline{\nu}_{\beta} \\ \nu_{\alpha}e^{-} \iff \nu_{\alpha}e^{-} \\ \nu_{\alpha}\overline{\nu}_{\alpha} \iff e^{+}e^{-} \\ e^{+}e^{-} \iff \gamma\gamma \end{array}$

 $\textbf{T}_{\nu}=\textbf{T}_{e}=\textbf{T}_{\gamma}$

□ neutrino decoupling

Г < Н @ Т ~ 1 MeV

Weak interactions

Hubble expansion

Fermi-Dirac spectrum

Formation of Cosmic v Background

\Box v in thermal equilibrium @ high temperature

16

$\nu_{\alpha}\nu_{\beta} \leftrightarrow \nu_{\alpha}\nu_{\beta}$ $\nu_{\alpha}\overline{\nu}_{\beta} \leftrightarrow \nu_{\alpha}\overline{\nu}_{\beta}$ $\nu_{\alpha}e^{-} \leftrightarrow \nu_{\alpha}e^{-}$ $\nu_{\alpha}\overline{\nu}_{\alpha} \leftrightarrow e^{+}e^{-}$ $e^+e^- \leftrightarrow \gamma\gamma$

 $T_v = T_e = T_v$

□ neutrino decoupling

Weak interactions

Hubble expansion

Fermi-Dirac spectrum

- □ photon reheating $e^+e^- \leftrightarrow \gamma\gamma$ @ T < m_e $T_{\nu} = \left(\frac{4}{11}\right)^{1/3} T_{\gamma}$
- □ Basic properties of CvB
 - > $T_0 = 1.95$ K and $\langle p \rangle = 3T_0 = 5 \times 10^{-4}$ eV
 - > number density $n = 56 \text{ cm}^{-3}$ per species

Relic neutrino capture on **B**-decaying nuclei

kinetic energy of electrons

no energy threshold on incident \mathbf{v} 's monoenergetic outgoing electrons

(Irvine & Humphreys, 83; Cucco et al., 07)

At least 2 v's cold today NON-relativistic v's!

Capture rate of a polarized neutrino state $v_i(s_v)$ on a free neutron

$$\sigma_{j}(s_{\nu})v_{\nu_{j}} = \frac{G_{\rm F}^{2}}{2\pi}|V_{ud}|^{2}|U_{ej}|^{2}F(Z,E_{e})\frac{m_{p}}{m_{n}}E_{e}p_{e}A(s_{\nu})(f^{2}+3g^{2})$$

$$A(s_{\nu}) \equiv 1 - 2s_{\nu}v_{\nu_{j}} = \begin{cases} 1 - v_{\nu_{j}}, & s_{\nu} = +1/2 \text{ RH Helicity} \\ 1 + v_{\nu_{j}}, & s_{\nu} = -1/2 \text{ LH Helicity} \end{cases}$$

In the limit $v_{v_j} \rightarrow 1$, the state of $s_v = +1/2$ cannot be captured In the limit $v_{v_j} \rightarrow 0$, both RH and LH helical states do contribute

Long, Lunardini, Sabancilar, 14; Lisanti, Safdi, Tully, 14

Total Rate

$$\Gamma_{C\nu B} = \sum_{j} \left[\sigma_{j} \left(+\frac{1}{2} \right) v_{\nu_{j}} n_{j} (\nu_{hR}) + \sigma_{j} \left(-\frac{1}{2} \right) v_{\nu_{j}} n_{j} (\nu_{hL}) \right] N_{T}$$

Capture rate of a polarized neutrino state $v_i(s_v)$ on a free neutron **Dirac** Majorana $\sigma_{j}(s_{\nu})v_{\nu_{j}} = \frac{G_{\rm F}^{2}}{2\pi}|V_{ud}|^{2}|U_{ej}|^{2}F(Z,E_{e})\frac{m_{p}}{m_{n}}E_{e}p_{e}A(s_{\nu})(f^{2}+3g^{2})$ Decoupling $A(s_{\nu}) \equiv 1 - 2s_{\nu}v_{\nu_{j}} = \begin{cases} 1 - v_{\nu_{j}}, & s_{\nu} = +1/2 \text{ RH Helicity} & n(\nu_{L}) = n(z) \\ 1 + v_{\nu_{j}}, & s_{\nu} = -1/2 \text{ LH Helicity} \end{cases}$ Nowadays In the limit $v_{\nu_i} \rightarrow 1$, the state of $s_{\nu} = +1/2$ cannot be captured In the limit $v_{\nu_i} \rightarrow 0$, both RH and LH helical states do contribute $n(\overline{\nu}_{hR}) = n_0$ $n(\nu_{hR}) = n_0$

Long, Lunardini, Sabancilar, 14; Lisanti, Safdi, Tully, 14

Total Rate

$$\Gamma_{\rm CvB} = \sum_{j} \left[\sigma_{j} \left(+\frac{1}{2} \right) v_{\nu_{j}} n_{j} (\nu_{\rm hR}) + \sigma_{j} \left(-\frac{1}{2} \right) v_{\nu_{j}} n_{j} (\nu_{\rm hL}) \right] N_{T}$$

 $\overline{n(v_{hL})} = n_0 \quad \overline{n(v_{hL})} = \overline{n_0}$

 $\overline{\sigma} \approx 3.8 \times 10^{-45} \mathrm{cm}^2$

$$\Gamma^{\mathrm{D}}_{\mathrm{C} \mathrm{v} \mathrm{B}} = \overline{\sigma} n_0 N_{\mathrm{T}}$$

 $\Gamma_{\rm CvB}^{\rm M} = 2\overline{\sigma}n_0N_{\rm T}$

EIN optimistic

2.43

9.9

19.7

At the Earth, larger by a factor of 1 to 20

Particle Physics with CvB

Summary and Outlook

- The next galactic core-collapse SN will be measured by a number of neutrino detectors, and a high-statistics real-time measurement is helpful in understanding explosion mechanisms and probing the intrinsic properties of massive neutrinos
- Give the priority to Diffuse SN Neutrino Background, a guaranteed source of SN neutrinos.
 We have SK with Gd doping, and JUNO (available within 3 years) also has a good chance.

Syst. uncertainty BG	J.	5%	20%		
$\langle E_{\bar{\nu}_{e}} \rangle$	rate only	spectral fit	rate only	spectral fit	
$12\mathrm{MeV}$	2.3σ	2.5σ	2.0σ	2.3σ	
$15\mathrm{MeV}$	3.5σ	3.7σ	3.2σ	3.3σ	
$18{ m MeV}$	4.6σ	4.8σ	4.1σ	4.3σ	
$21{ m MeV}$	5.5σ	5.8σ	4.9σ	5.1σ	

Neutrino Physics with JUNO, JPG, 16

 Very promising to detect the relic neutrinos from the Big Bang in the PTOLEMY experiment. It is time to have a serious look at theoretical predictions for local number densities, the detection rates and physics potentials for elementary particles and cosmology

Summary and Outlook

- The next galactic core-collapse SN will be measured by a number of neutrino detectors, and a high-statistics real-time measurement is helpful in understanding explosion mechanisms and probing the intrinsic properties of massive neutrinos
- Give the priority to Diffuse SN Neutrino Background, a guaranteed source of SN neutrinos.
 We have SK with Gd doping, and JUNO (available within 3 years) also has a good chance.

Syst. uncertainty BG	Ę	5%	20%		
$\langle E_{\bar{\nu}_{e}} \rangle$	rate only	spectral fit	rate only	spectral fit	
$12\mathrm{MeV}$	2.3σ	2.5σ	2.0σ	2.3σ	
$15\mathrm{MeV}$	3.5σ	3.7σ	3.2σ	3.3σ	
$18{ m MeV}$	4.6σ	4.8σ	4.1σ	4.3σ	
$21{ m MeV}$	5.5σ	5.8σ	4.9σ	5.1σ	

Neutrino Physics with JUNO, JPG, 16

 Very promising to detect the relic neutrinos from the Big Bang in the PTOLEMY experiment. It is time to have a serious look at theoretical predictions for local number densities, the detection rates and physics potentials for elementary particles and cosmology

Thanks a lot for your attention!