High energy neutrino astronomy What we have learned and the way forward

Eli Waxman Weizmann Institute of Science

The acceleration challenge

• EM acceleration: $L > 10^{12} \frac{\Gamma^2}{V/c} \left(\frac{E/Z}{10^{11} \text{GeV}}\right)^2 L_{\text{sun}}$.

[Lovelace 76; EW 95; Norman et al. 95; Lemoine & EW 09]

- Z > 10 Several candidates.
- p 2 candidate transient sources, Rapid mass accretion onto BHs.
 - Gamma-ray bursts (GRB), newly formed solar mass BHs;

[Vietri 95; Milgrom & Usov 95; EW 95]

 Tidal disruption of stars (TDE) by massive BHs at galaxy centers, may produce "GRB-like" jets.

[Gruzinov & Farrar 09; Wang & Liu 16]

(- Young, ms, 10¹³G Neutron Stars? If they exist... [Arons 03;... Lemoine et al. 15].)

UHE, >10¹⁰GeV, CRs

UHE: Air shower composition constraints

- Discrepancy between experiments.
- Air-shower analyses inconclusive:
- Models inconsistent with data (X_{max} dist., muons);
- Large uncertainties within used models;
- ~25% uncertainty at E_{CM}>100TeV corresponds to N ← → H.

[e.g. Ulrich, Engel & Unger 11]

>10¹⁰GeV spectrum: a hint to p's

- $p + \gamma[CMB] \rightarrow N + \pi$, above $10^{19.7} eV$. $t_{eff} < 1Gyr$, d<300Mpc.
- Observed spectrum consistent with - A flat generation spectrum of p's $E^2 \frac{d\dot{n}}{dE} = Const.$ = $(0.5 \pm 0.2)10^{44} \frac{\text{erg}}{\text{Mpc}^3 \text{yr}}$, [EW 95, Bahcall & EW 03, Katz & EW 09]
 - Modified by p-GZK suppression.
- G-XG transition @ ~10¹⁰GeV.
- 1/E² spectrum:
 - Observed in a wide range of systems,
 - Obtained in EM acceleration in collision-less shocks (the only predictive acceleration model).

[e.g. Sironi et al. 15, Park et al. 15]

High energy v telescopes

- Detect HE v's from $p(A)-p/p(A)-\gamma \rightarrow charged pions \rightarrow v's,$ $\pi^{+} \rightarrow \mu^{+} + \nu_{\mu} \rightarrow e^{+} + \nu_{e} + \overline{\nu_{\mu}} + \nu_{\mu},$ $E_{\nu}/(E_{A}/A)\sim 0.05.$
- Goals:
 - Identify the sources (no delay or deflection with respect to EM),
 - Identify the particles,
 - Study source/acceleration physics,
 - Study v/fundamental physics.

HE v: predictions

For cosmological proton sources,

$$E^2 \frac{d\dot{n}}{dE} = Const. = (0.5 \pm 0.2) 10^{44} \frac{\text{erg}}{\text{Mpc}^3 \text{yr}}.$$

• An upper bound to the v intensity (all $p \rightarrow \pi$):

$$E^{2} \frac{dj_{\nu}}{dE} \leq E^{2} \Phi_{WB} = \frac{3}{8} \frac{ct_{H}}{4\pi} \zeta \left(E^{2} \frac{d\dot{n}}{dE} \right) = 10^{-8} \zeta \frac{\text{GeV}}{\text{cm}^{2} \text{s sr'}},$$

$$\zeta = 0.6,3 \text{ for } f(z) = 1, (1+z)^{3}.$$
[EW & Bahcall 99; Bahcall & EW 01]

- Saturation of the bound.
 - ~10¹⁰GeV -If- Cosmological p's.

[Berezinsky & Zatsepin 69]

 - <~10⁶GeV -If- Cosmological p's & CR ~ star-formation activity. Most stars formed in rapidly star-forming galaxies, which are p "calorimeters" for E_p<~10⁶GeV, all p→π by pp in the inter-stellar gas, t_{pp} < t_{conf}(E < 10⁶GeV).

[Loeb & EW 06]

HE v: predictions

Bound implications: >1Gton detector (natural, transparent)

AMANDA & IceCube

Astrophysical neutrino telescopes

A. B. McDonald^{a)} SNO Institute, Queen's University, Kingston, Canada K7L 3N6

C. Spiering DESY Zeuthen, Platanenallee 6, D-15738 Zeuthen, Germany

S. Schönert

Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany

Status: Flux, spectrum

• Excess below ~50TeV. If real, likely a new low E component (rather than a soft Γ =2.5 spectrum).

[e.g. Palladino & Vissani 16]

- However, note:
 - Φ ~ 0.01 $\Phi_{\rm Atm.}$ at low E,
 - N/S assymetry?
 - Veto efficiency decreasing at low E,
 - Tension with Fermi data.

IceCube's (>50TeV) v sources

- DM decay? Unlikely- chance coincidence with Φ_{WB} .
- Galactic? Unlikely Isotropy.
- A natural explanation

(= no free parameters, no ad-hoc new sources postulated): XG UHE p sources, Q_E=Const., residing in (starburst) "calorimeters". Main open guestion: properties of star-forming galaxies at z~1.

Have we already seen the "calorimeters"?

In γ 's: $L_{\gamma} \sim (2/3) L_{\gamma}$

- Predicted γ -flux from nearby starbursts (M82, NGC253) $E^2 \phi_{\gamma} \approx 10^{-9.5} \text{GeV/cm}^2 \text{s}$ Below 10^4GeV .
- Detected by Fermi, HESS, VERITAS @ 10^{1-3} GeV.

In v's: No sources with multiple- v_{μ} -events

$$N(\text{multiple } \nu_{\mu} \text{ events}) = 1 \left(\frac{\zeta}{3}\right)^{-\frac{3}{2}} \left(\frac{n_{s}}{10^{-7} \text{Mpc}^{-3}}\right)^{-\frac{1}{2}} \left(\frac{A}{1 \text{km}^{2}}\right)^{\frac{3}{2}}$$
$$\implies n_{s} > \frac{10^{-7}}{\text{Mpc}^{3}} \left(\frac{A}{1 \text{km}^{2}}\right)^{3}, \qquad N(\text{all sky}) > 10^{6}$$
$$, \qquad L_{\nu} < 10^{42.5} \text{erg/s} = 10^{9} L_{\text{Sun}}.$$

[Kowalski 14, Ahlers & Halzen 14, Murase & EW 16]

- Rare bright sources: Ruled out (eg "blazars", n<10^{-8.5}/Mpc³).
- Detection of multiple events from few nearby sources requires $A \rightarrow A \times 5$ for n~10⁻⁵/Mpc³ (eg starbursts).

Fermi's XG y-ray background [EGB]

- $L_{\gamma} \sim (2/3) L_{\nu}$.
- The v sources (starbursts?) produce a significant fraction of the unresolved γ-background. [Thompson, Quataert & EW 06]

- $\frac{d \log n}{d \log E}$ > -2.2
- The ~50TeV neutrino "excess" is in tension with Fermi's EGB.
 If real: "hidden" sources?

Model predictions vs. observations

Model: UHE CR flux dominated by shock accelerated p's,

 $+ L_{CR} \propto SFR.$

Single parameter: $E^2 \frac{d\dot{n}}{dE} \approx Const. = Q = 0.5 \times 10^{44} \text{erg/Mpc}^3 \text{yr}$

UHE (>10 ⁹ GeV)		VHE		Galactic	
Prediction	Obs.	Prediction	Obs.	Prediction	Obs.
CR suppression above $10^{19.7} { m eV}$	~	$\phi_ u = \phi_{WB}$ Below $10^6 { m GeV}$	$\phi_{\nu} = \phi_{WB}$ @ 10 ^{5-6.5} GeV \checkmark	G-XG transition at 10 ¹⁰ GeV	;
$\frac{d\log n}{d\log E} \approx -2$	7	$\phi_{ u}$ suppressed above $10^6 { m GeV}$	(low statistical significance)	$10 \text{ GeV CR} \\ \text{production} \\ \ge Q$	$\begin{array}{c} 10 \text{ GeV CR} \\ \text{production} \\ Q \sim 10Q \end{array} $
$\phi_{ u} \approx \phi_{WB}$ @ 10 ⁹ GeV	$oldsymbol{\dot{\phi}}_{ u} \leq \phi_{WB}$ (90% CL)	$egin{aligned} XG \ \phi_{\gamma} &\approx \phi_{ u} &pprox \phi_{WB} \ \mathbf{@} \ 10^2 \mathrm{GeV} \end{aligned}$	(source subtraction uncertainty)		
(weak) LSS anisotropy	?	Nearby star- bursts (M82, NGC253) $\phi_{\gamma} \approx \phi_{\nu}$ $\approx 10^{-9.5} \text{GeV/cm}^2 \text{s}$ Below 10^4GeV	$\gamma @ 10^{1-3} \text{GeV} \checkmark$ $\gamma \sim 10^4 \text{GeV} ?$ ν ?		

A single cosmic ray source across the spectrum?

A single cosmic ray source across the spectrum?

Identifying the sources

- IC's v's are likely produced by the "calorimeters" surrounding the sources. Prompt emission from the source, $\Phi \ll \Phi_{WB}$. E.g. "classical GRB" $\Phi_{grb} \approx 10^{-2} (10^{-1}) \Phi_{WB}$ at 10⁵GeV (10⁶GeV). [EW & Bahcall 97]
- UHECRs are likely produced by transient "bursting" sources.
- Detection of prompt v's from transient CR sources, temporal ν-γ association, requires:

Wide field EM monitoring,

Real time alerts for follow-up of high E v events,

and

Significant [x10] increase of the v detector mass at ~100TeV.

• GRBs: $v-\gamma$ timing (10s over Hubble distance) \rightarrow LI to 1:10¹⁶; WEP to 1:10⁶.

[EW & Bahcall 97; Amelino-Camelia, et al. 98; Coleman & Glashow 99; Jacob & Piran 07, Wei et al 16]

The way forward: I. GZK v's

- Significant p fraction @ $10^{10.7}$ GeV $\rightarrow \phi_{\nu}(10^{9}$ GeV) $\approx 10^{-8}$ GeV/cm²s sr
- Detector with 10⁻⁹GeV/cm²s sr @ 10⁸ – 10¹⁰GeV Will test p @ GZK, Measure p fraction down to 10%.
- Feasible (~5 yr) using the coherent radio Cerenkov technique, ARA & ARIANNA (unite at south pole).

The way forward: II. VHE $\nu ^{\prime} s$

- M_{eff}~10 Gton @ 10⁵ 10⁸GeV
- Reduce uncertainties in v flux, spectrum, isotropy, flavor ratio.
 [A different v source at <50TeV? A cutoff >3PeV?]
- Detect the nearest CR/ $_{\rm V}$ "calorimeters".
- Possible identification of the CR sources by temporal $v-\gamma$ association ($\Phi_v \sim 0.1 \Phi_{WB}$). [Requires: Wide field EM monitoring, real time alerts, X/ γ telescopes.]
- Feasible with IceCube Gen 2, KM3NeT (< 10yr).

The way forward: III. HE v's

- M_{eff} ~10 Gton @ $10^4 10^5 \text{GeV}$
 - Point source sensitivity ~ advance γ-ray telescopes = CTA's (construction starts 2017).
 - "Multi-messenger" γ -v astronomy, γ -ray detection of v sources (L_{γ} ~ L_{v}).
 - Search for Steady Galactic "Pevatrons".

10 Gton v detector point source sensitivity								
	$E_{\mu,\min}$ (TeV)							
$\Psi_{\rm med}$ (°)	0.1	1	10	100				
Flux $(10^{-13} \text{ TeV cm}^{-2} \text{ s}^{-1})$								
0.1	1.11	1.12	1.25	2.03				
0.2	1.66	1.67	1.78	2.63				
0.3	2.13	2.13	2.24	3.13				
0.5	2.95	2.96	3.06	4.02				
1.0	4.76	4.76	4.87	5.94				

[van Santen 2017]

Future constraints from flavor ratios

- Without "new physics", nearly single parameter ($\sim f_e @$ source).
- Few % flavor ratio accuracy [requires x10 M_{eff} @ ~100 TeV]
- → Relevant v physics constraints [even with current mixing uncertainties].
 E.g. (for π decay) $\mu/(e+\tau) = 0.49 (1-0.05 Cos \delta_{CP}),$ $e/\tau = 1.04 (1+0.08 Cos \delta_{CP}).$ [Blum et al. 05; Seprico & Kachelriess 05; Lipari et al. 07;

Winter 10; Pakvasa 10; Meloni & Ohlsson 12; Ng & Beacom 14; Ioka & Murase 14; Ibe & Kaneta 14; Blum et al. 14; Marfatia et al. 15; Bustamante et al. 15...]

Future constraints from flavor ratios

- Without "new physics", nearly single parameter ($\sim f_e @$ source).
- Few % flavor ratio accuracy [requires x10 M_{eff} @ ~100 TeV]
- → Relevant v physics constraints [even with current mixing uncertainties].
 E.g. (for π decay) $\mu/(e+\tau) = 0.49 (1-0.05 Cos \delta_{CP}),$ $e/\tau = 1.04 (1+0.08 Cos \delta_{CP}).$ [Blum et al. 05; Seprico & Kachelriess 05; Lipari et al. 07;

Winter 10; Pakvasa 10; Meloni & Ohlsson 12; Ng & Beacom 14; Ioka & Murase 14; Ibe & Kaneta 14; Blum et al. 14; Marfatia et al. 15; Bustamante et al. 15...]

Short GRBs: multi-messenger prospects

- The jets of short GRBs are believed to be driven by Neutron star mergers.
- Prospects for detection in Gravitational waves, Photons, Neutrinos.
- Study Nuclear density matter, Jet "engines", Particle acceleration.

Summary

- IceCube detects extra-Galactic v's: The beginning of XG v astronomy.
 * The flux is as high as could be hoped for.
 - * $\Phi_v \sim \Phi_{WB}$ suggests a connection with UHECRs: >10¹⁹eV CRs and PeV v's from

Transient XG p sources, $E^2 \frac{d\dot{n}}{dE} \approx Const.$, $L_{CR} \propto SFR$; >1PeV (>1GeV?) Galactic CRs – from a past transient. Consistent with XG γ -background & nearby starburst γ emission.

- What is missing?
 - Reliable measurement of the p-fraction at UHE.
 - Identification of the PeV ν "calorimeters".
 - Identification of the (transient) CR sources.
- Can be addressed by next generation v telescopes.
 - 10^{-9} GeV/cm²s sr @ $10^8 10^{10}$ GeV (ARA, ARIANNA, [Auger data]).
 - M_{eff} ~10 Gton @ $10^5 10^8 \text{GeV}$ (IceCube Gen 2, KM3NeT).

Wide field EM monitoring, real time alerts.

"Multi-messenger": point source sensitivity ~ advanced γ telescopes (CTA).