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Standard Cosmology II
• Newtonian gauge
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where gµν is the original frame metric, and A(φ, X) and
B(φ, X) are respectively called conformal and disformal
factors, which are functions of the scalar field φ and its
kinetic term X ≡ −gµν∂µφ∂νφ/2. Here and hereafter, φ
is a generic scalar field, and we do not specify it though
the case with φ being responsible for dark energy is the
most interesting. The action is given by

S =

∫
d4x

√
−g

[
M2

Pl

2
(R[g]− 2Λ) + Lφ[g,φ]

]
+ Sm ,(2)

where Lφ represents a Lagrangian for scalar field and Sm

a total matter action. For simplicity, we consider the
canonical scalar field: Lφ = − 1

2 (∂φ)
2−V (φ) and assume

the scalar field does not modify the gravitational sector,
i.e., the absence of kinetic braiding [16]. As for the matter
sector, we assume that the baryon is minimally coupled
for simplicity while the CDM couples with the scalar field
through the barred metric ḡµν defined in (1). The total
matter action is thus given by

Sm = Sb + Sc

=

∫
d4x

[√
−gLb[gµν ,ψb] +

√
−ḡLc[gµν ,ψc]

]
,(3)

where Sb and Sc represent the actions for baryon and
CDM, respectively. Due to the non-minimal coupling
between the dark matter and the scalar field, baryonic
matter and dark matter do not move in the same way.
The variation with respect to the metric gµν leads to

the Einstein equations as usual,

Gµν + Λgµν =
1

M2
Pl

(
T (b)
µν + T (c)

µν + T (φ)
µν

)
. (4)

Here and hereafter, T (I)
µν = − 2√

−g
δSI
δgµν and T (φ)

µν =

− 2√
−g

δ(
√
−gLφ)
δgµν . The superscript I represents b, c or m

for baryon, dark matter and total matter, respectively.
The combination of the energy-momentum tensor for to-

tal matter T (m)
µν := T (b)

µν + T (c)
µν and the scalar sector

T (φ)
µν is conserved as ∇µ(T (m)

µν + T (φ)
µν ) = 0 . The energy-

momentum conservation for baryon also takes the famil-

iar form, ∇µT (b)
µν = 0. On the other hand, the energy-

momentum tensors for the scalar field and dark matter
no longer satisfy the conservation law individually, and

it rather takes the following form, ∇µT (c)
µν = −∇µT (φ)

µν .
The scalar equation is given by

✷φ− Vφ = Q , (5)

where Q, which characterizes the coupling between CDM
and the scalar field, is defined as

Q ≡ − 1√
−g

δ(
√
−ḡLc)

δφ
= ∇µW

µ − Z , (6)

with

Z =
1

2A

[{
Aφ +

AXX(Aφ − 2BφX)

A−AXX + 2BXX2

}
T(c)

+

{
Bφ +

BXX(Aφ − 2BφX)

A−AXX + 2BXX2

}
Tµν
(c)∂µφ∂νφ

]
, (7)

Wµ =
1

2A

[
2B Tµν

(c)∂νφ− A− 2BX

A−AXX + 2BXX2

×
(
AXT(c) +BXTαβ

(c) ∂αφ∂βφ
)
∂µφ

]
, (8)

where Uφ = ∂U/∂φ , UX = ∂U/∂X for U = A ,B . By
the use of Eq. (5), the energy-momentum conservation
for CDM and total matter can be recast as

∇µT (c)
µν = ∇µT (m)

µν = −Q ∂νφ . (9)

Basic equations.
We work on a spatially flat FLRWmetric in Newtonian

gauge,

ds2 = −[1 + 2Φ(t,x)]dt2 + a2(t)[1− 2Ψ(t,x)]dx2 , (10)

and define the background and perturbations of the
energy-momentum tensor for the baryon, the dark mat-
ter and the total matter as

T 0
(I)0 = −ρI(t)

[
1 + δI(t,x)

]
, (11)

T 0
(I)i = −ρI(t) ∂ivI(t,x) , (12)

and (otherwise)= 0 1. Based on these equations, we can
find relations as

δm = ωcδc + ωbδb , (13)

vm = ωcvc + ωbvb , (14)

where ωI = ρI/ρm. We also split the scalar field as
φ(t,x) → φ(t) + δφ(t,x). The background part of the
Einstein equation gives

H2 =
1

3M2
Pl

(
ρc + ρb + Λ+

1

2
φ̇2 + V

)
, (15)

3H2 + 2Ḣ =
1

M2
Pl

(
Λ− 1

2
φ̇2 + V

)
. (16)

The background equation of motion for φ (5) yields

φ̈+ 3Hφ̇+ Vφ = −Q0 , (17)

1 Note that the pressureless feature of the CDM is ro-
bust at least at first order of perturbations even if
we take other definitions of energy momentum tensor

such as T
(c)
µν = −(2/

√
−g)δ(

√
−gLc)/δgµν and T̃

(c)
µν =

−(2/
√
−g)δ(

√
−gLc)/δgµν .

• Basic equations  (sub-horizon approximation)

�̇m +
k2

a2
vm = 0 v̇m � � = 0

k2

a2
 =

k2

a2
� = �4⇡G⇢m�m (Poisson equation)

(continuity & Euler equation)
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• Linear growth rate  fm

• Growth factor Dm
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Fig. 17. Constraints on the growth rate f(z)σ8(z) as a function of redshift at 0 < z < 1.55. The constraint obtained from our FastSound sample at 1.19 <

z < 1.55 is plotted as the big red point. The previous results include the 6dFGS, 2dFGRS, SDSS main galaxies, SDSS LRG, BOSS LOWZ , WiggleZ, BOSS
CMASS, VVDS, and VIPERS surveys at z < 1. A theoretical prediction for fσ8 from ΛCDM and general relativity with the amplitude determined by minimizing
χ2 is shown as the red solid line. The data points used for the χ2 minimization are denoted as the filled-symbol points while those which are not used are
denoted as the open-symbol points. The predictions for fσ8 from modified gravity theories with the amplitude determined in the same way are shown as the
thin lines with different line types; f(R) gravity model (dot-short-dashed), the covariant Galileon model (dashed), the extended Galileon model (dotted), DGP
model (dot-dashed), and the early, time varying gravitational constant model (black solid).

modification of gravity manifests itself in the observations of
RSD. Provided that the stability condition 0 < Rf,RR/f,R ≤ 1

(where f,R=df/dR) is satisfied, the solution finally approaches
a de Sitter solution characterized by Rf,R = 2f (Amendola
et al. 2007). In this case the the effective gravitational coupling
in f(R) gravity is given by (Tsujikawa 2007; de Felice et al.
2011b)

Geff =
G0

f,R

1+4r/3
1+ r

, r =

(

k
amφ

)2

. (26)

where m2
φ ≃ f,R/(3f,RR) and we have that the f(R) model

(25) exhibits the gravitational interaction stronger than that in
the ΛCDM model at low redshifts.
As an example, we choose n=2 and λ= 2 and compute the

χ2 statistics by changing the normalization of fσ8 as we have
done for GR above. The resulting fσ8 as a function of z with the
best fitting amplitude at the scale k−1 = 30 h−1 Mpc is shown
as the dot-dashed line in figure 17. Because the f(R) gravity
model exhibits stronger gravity than GR, fitting the f(R)model
to the RSD measurements gives fσ8 smaller than the ΛCDM
model at higher redshift.

6.2.2 Dvali-Gabadadze-Porrati braneworld
An alternative model we consider is the Dvali-Gabadadze-
Porrati (DGP) braneworld (Dvali et al. 2000), in which a 3-
brane is embedded in a 5-dimensional (5D) Minkowski bulk
spacetime with an infinitely large extra dimension. In the ef-
fective 4-dimensional (4D) picture, the Friedmann equation on
the flat FLRW brane is given byH2− ϵH/rc = κ2

4ρm/3, where
ϵ = ±1 and rc = κ2

(5)/(2κ
2
(4)) is a length scale determined by

the ratio of 5D and 4D gravitational constants κ(5) and κ(4). For
the branch ϵ=+1, there is a de Sitter solution characterized by
the Hubble parameter HdS = 1/rc. We include this model be-
cause it realizes (as we shall see) Geff < G; unfortunately it
is associated with the existence of ghosts (Nicolis & Rattazzi
2004).
On the scale of surveys we have that the effective Newton’s

constant satisfies (Lue et al. 2004, Koyama & Maartens 2006):

Geff =

[

1+
1

3β(t)

]

G0 , β(t)≡1−2Hrc

(

1+
Ḣ
3H2

)

.(27)

SinceHrc≫1 and Ḣ/H2≃−3/2 in the deep matter era, it fol-
lows that |β|≫1 and henceGeff ≃G. As the background trajec-
tory approaches the de Sitter solution characterized byHrc = 1

and Ḣ = 0, we have that β = −1 and Geff = 2G/3. The DGP
model gives rise to weaker gravity due to the gravitational leak-
age to the extra dimension.
Since the DGP model predicts a weaker gravitational in-

teraction on cosmological scales, fitting the amplitude of
f(z)σ8(z) to RSD measurements without using the bound of
σ8(0) from CMB measurements gives rise to f(z)σ8(z) larger
than that of the ΛCDM model at high redshifts (z > 1). The
best-fit curve of the DGP model is plotted as the dot-long-
dashed line in Fig. 17, which exhibits a notable deviation from
the ΛCDM model and f(R) gravity at the redshift associated
with the FastSound measurement.

6.2.3 Galileons
Another class of models that modify gravity are based around a
scalar field, φ that satisfies a Galilean shift symmetry: ∂µφ →
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modification of gravity manifests itself in the observations of
RSD. Provided that the stability condition 0 < Rf,RR/f,R ≤ 1

(where f,R=df/dR) is satisfied, the solution finally approaches
a de Sitter solution characterized by Rf,R = 2f (Amendola
et al. 2007). In this case the the effective gravitational coupling
in f(R) gravity is given by (Tsujikawa 2007; de Felice et al.
2011b)

Geff =
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, r =

(

k
amφ

)2

. (26)

where m2
φ ≃ f,R/(3f,RR) and we have that the f(R) model

(25) exhibits the gravitational interaction stronger than that in
the ΛCDM model at low redshifts.
As an example, we choose n=2 and λ= 2 and compute the

χ2 statistics by changing the normalization of fσ8 as we have
done for GR above. The resulting fσ8 as a function of z with the
best fitting amplitude at the scale k−1 = 30 h−1 Mpc is shown
as the dot-dashed line in figure 17. Because the f(R) gravity
model exhibits stronger gravity than GR, fitting the f(R)model
to the RSD measurements gives fσ8 smaller than the ΛCDM
model at higher redshift.

6.2.2 Dvali-Gabadadze-Porrati braneworld
An alternative model we consider is the Dvali-Gabadadze-
Porrati (DGP) braneworld (Dvali et al. 2000), in which a 3-
brane is embedded in a 5-dimensional (5D) Minkowski bulk
spacetime with an infinitely large extra dimension. In the ef-
fective 4-dimensional (4D) picture, the Friedmann equation on
the flat FLRW brane is given byH2− ϵH/rc = κ2

4ρm/3, where
ϵ = ±1 and rc = κ2

(5)/(2κ
2
(4)) is a length scale determined by

the ratio of 5D and 4D gravitational constants κ(5) and κ(4). For
the branch ϵ=+1, there is a de Sitter solution characterized by
the Hubble parameter HdS = 1/rc. We include this model be-
cause it realizes (as we shall see) Geff < G; unfortunately it
is associated with the existence of ghosts (Nicolis & Rattazzi
2004).
On the scale of surveys we have that the effective Newton’s

constant satisfies (Lue et al. 2004, Koyama & Maartens 2006):

Geff =

[
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]

G0 , β(t)≡1−2Hrc

(

1+
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)
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SinceHrc≫1 and Ḣ/H2≃−3/2 in the deep matter era, it fol-
lows that |β|≫1 and henceGeff ≃G. As the background trajec-
tory approaches the de Sitter solution characterized byHrc = 1

and Ḣ = 0, we have that β = −1 and Geff = 2G/3. The DGP
model gives rise to weaker gravity due to the gravitational leak-
age to the extra dimension.
Since the DGP model predicts a weaker gravitational in-

teraction on cosmological scales, fitting the amplitude of
f(z)σ8(z) to RSD measurements without using the bound of
σ8(0) from CMB measurements gives rise to f(z)σ8(z) larger
than that of the ΛCDM model at high redshifts (z > 1). The
best-fit curve of the DGP model is plotted as the dot-long-
dashed line in Fig. 17, which exhibits a notable deviation from
the ΛCDM model and f(R) gravity at the redshift associated
with the FastSound measurement.

6.2.3 Galileons
Another class of models that modify gravity are based around a
scalar field, φ that satisfies a Galilean shift symmetry: ∂µφ →
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Non-minimally Coupled DM

• GR + scalar field (Dark energy)

2

where gµν is the original frame metric, and A(φ, X) and
B(φ, X) are respectively called conformal and disformal
factors, which are functions of the scalar field φ and its
kinetic term X ≡ −gµν∂µφ∂νφ/2. Here and hereafter, φ
is a generic scalar field, and we do not specify it though
the case with φ being responsible for dark energy is the
most interesting. The action is given by

S =

∫
d4x

√
−g

[
M2

Pl

2
(R[g]− 2Λ) + Lφ[g,φ]

]
+ Sm ,(2)

where Lφ represents a Lagrangian for scalar field and Sm

a total matter action. For simplicity, we consider the
canonical scalar field: Lφ = − 1

2 (∂φ)
2−V (φ) and assume

the scalar field does not modify the gravitational sector,
i.e., the absence of kinetic braiding [16]. As for the matter
sector, we assume that the baryon is minimally coupled
for simplicity while the CDM couples with the scalar field
through the barred metric ḡµν defined in (1). The total
matter action is thus given by

Sm = Sb + Sc

=

∫
d4x

[√
−gLb[gµν ,ψb] +

√
−ḡLc[gµν ,ψc]

]
,(3)

where Sb and Sc represent the actions for baryon and
CDM, respectively. Due to the non-minimal coupling
between the dark matter and the scalar field, baryonic
matter and dark matter do not move in the same way.
The variation with respect to the metric gµν leads to

the Einstein equations as usual,

Gµν + Λgµν =
1

M2
Pl

(
T (b)
µν + T (c)

µν + T (φ)
µν

)
. (4)

Here and hereafter, T (I)
µν = − 2√

−g
δSI
δgµν and T (φ)

µν =

− 2√
−g

δ(
√
−gLφ)
δgµν . The superscript I represents b, c or m

for baryon, dark matter and total matter, respectively.
The combination of the energy-momentum tensor for to-

tal matter T (m)
µν := T (b)

µν + T (c)
µν and the scalar sector

T (φ)
µν is conserved as ∇µ(T (m)

µν + T (φ)
µν ) = 0 . The energy-

momentum conservation for baryon also takes the famil-

iar form, ∇µT (b)
µν = 0. On the other hand, the energy-

momentum tensors for the scalar field and dark matter
no longer satisfy the conservation law individually, and

it rather takes the following form, ∇µT (c)
µν = −∇µT (φ)

µν .
The scalar equation is given by

✷φ− Vφ = Q , (5)

where Q, which characterizes the coupling between CDM
and the scalar field, is defined as

Q ≡ − 1√
−g

δ(
√
−ḡLc)

δφ
= ∇µW

µ − Z , (6)

with

Z =
1

2A

[{
Aφ +

AXX(Aφ − 2BφX)

A−AXX + 2BXX2

}
T(c)

+

{
Bφ +

BXX(Aφ − 2BφX)

A−AXX + 2BXX2

}
Tµν
(c)∂µφ∂νφ

]
, (7)

Wµ =
1

2A

[
2B Tµν

(c)∂νφ− A− 2BX

A−AXX + 2BXX2

×
(
AXT(c) +BXTαβ

(c) ∂αφ∂βφ
)
∂µφ

]
, (8)

where Uφ = ∂U/∂φ , UX = ∂U/∂X for U = A ,B . By
the use of Eq. (5), the energy-momentum conservation
for CDM and total matter can be recast as

∇µT (c)
µν = ∇µT (m)

µν = −Q ∂νφ . (9)

Basic equations.
We work on a spatially flat FLRWmetric in Newtonian

gauge,

ds2 = −[1 + 2Φ(t,x)]dt2 + a2(t)[1− 2Ψ(t,x)]dx2 , (10)

and define the background and perturbations of the
energy-momentum tensor for the baryon, the dark mat-
ter and the total matter as

T 0
(I)0 = −ρI(t)

[
1 + δI(t,x)

]
, (11)

T 0
(I)i = −ρI(t) ∂ivI(t,x) , (12)

and (otherwise)= 0 1. Based on these equations, we can
find relations as

δm = ωcδc + ωbδb , (13)

vm = ωcvc + ωbvb , (14)

where ωI = ρI/ρm. We also split the scalar field as
φ(t,x) → φ(t) + δφ(t,x). The background part of the
Einstein equation gives

H2 =
1

3M2
Pl

(
ρc + ρb + Λ+

1

2
φ̇2 + V

)
, (15)

3H2 + 2Ḣ =
1

M2
Pl

(
Λ− 1

2
φ̇2 + V

)
. (16)

The background equation of motion for φ (5) yields

φ̈+ 3Hφ̇+ Vφ = −Q0 , (17)

1 Note that the pressureless feature of the CDM is ro-
bust at least at first order of perturbations even if
we take other definitions of energy momentum tensor

such as T
(c)
µν = −(2/

√
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where gµν is the original frame metric, and A(φ, X) and
B(φ, X) are respectively called conformal and disformal
factors, which are functions of the scalar field φ and its
kinetic term X ≡ −gµν∂µφ∂νφ/2. Here and hereafter, φ
is a generic scalar field, and we do not specify it though
the case with φ being responsible for dark energy is the
most interesting. The action is given by

S =

∫
d4x

√
−g

[
M2

Pl

2
(R[g]− 2Λ) + Lφ[g,φ]

]
+ Sm ,(2)

where Lφ represents a Lagrangian for scalar field and Sm

a total matter action. For simplicity, we consider the
canonical scalar field: Lφ = − 1

2 (∂φ)
2−V (φ) and assume

the scalar field does not modify the gravitational sector,
i.e., the absence of kinetic braiding [16]. As for the matter
sector, we assume that the baryon is minimally coupled
for simplicity while the CDM couples with the scalar field
through the barred metric ḡµν defined in (1). The total
matter action is thus given by

Sm = Sb + Sc

=

∫
d4x

[√
−gLb[gµν ,ψb] +

√
−ḡLc[gµν ,ψc]

]
,(3)

where Sb and Sc represent the actions for baryon and
CDM, respectively. Due to the non-minimal coupling
between the dark matter and the scalar field, baryonic
matter and dark matter do not move in the same way.
The variation with respect to the metric gµν leads to

the Einstein equations as usual,

Gµν + Λgµν =
1

M2
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T (b)
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µν + T (φ)
µν

)
. (4)
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µν is conserved as ∇µ(T (m)
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µν = 0. On the other hand, the energy-

momentum tensors for the scalar field and dark matter
no longer satisfy the conservation law individually, and

it rather takes the following form, ∇µT (c)
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The scalar equation is given by

✷φ− Vφ = Q , (5)

where Q, which characterizes the coupling between CDM
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where Uφ = ∂U/∂φ , UX = ∂U/∂X for U = A ,B . By
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for CDM and total matter can be recast as

∇µT (c)
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Basic equations.
We work on a spatially flat FLRWmetric in Newtonian
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and define the background and perturbations of the
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where gµν is the original frame metric, and A(φ, X) and
B(φ, X) are respectively called conformal and disformal
factors, which are functions of the scalar field φ and its
kinetic term X ≡ −gµν∂µφ∂νφ/2. Here and hereafter, φ
is a generic scalar field, and we do not specify it though
the case with φ being responsible for dark energy is the
most interesting. The action is given by

S =

∫
d4x

√
−g

[
M2

Pl

2
(R[g]− 2Λ) + Lφ[g,φ]

]
+ Sm ,(2)

where Lφ represents a Lagrangian for scalar field and Sm

a total matter action. For simplicity, we consider the
canonical scalar field: Lφ = − 1

2 (∂φ)
2−V (φ) and assume

the scalar field does not modify the gravitational sector,
i.e., the absence of kinetic braiding [16]. As for the matter
sector, we assume that the baryon is minimally coupled
for simplicity while the CDM couples with the scalar field
through the barred metric ḡµν defined in (1). The total
matter action is thus given by

Sm = Sb + Sc

=

∫
d4x

[√
−gLb[gµν ,ψb] +

√
−ḡLc[gµν ,ψc]

]
,(3)

where Sb and Sc represent the actions for baryon and
CDM, respectively. Due to the non-minimal coupling
between the dark matter and the scalar field, baryonic
matter and dark matter do not move in the same way.
The variation with respect to the metric gµν leads to

the Einstein equations as usual,

Gµν + Λgµν =
1

M2
Pl

(
T (b)
µν + T (c)

µν + T (φ)
µν

)
. (4)

Here and hereafter, T (I)
µν = − 2√
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δSI
δgµν and T (φ)

µν =

− 2√
−g

δ(
√
−gLφ)
δgµν . The superscript I represents b, c or m

for baryon, dark matter and total matter, respectively.
The combination of the energy-momentum tensor for to-

tal matter T (m)
µν := T (b)

µν + T (c)
µν and the scalar sector

T (φ)
µν is conserved as ∇µ(T (m)

µν + T (φ)
µν ) = 0 . The energy-

momentum conservation for baryon also takes the famil-

iar form, ∇µT (b)
µν = 0. On the other hand, the energy-

momentum tensors for the scalar field and dark matter
no longer satisfy the conservation law individually, and

it rather takes the following form, ∇µT (c)
µν = −∇µT (φ)

µν .
The scalar equation is given by

✷φ− Vφ = Q , (5)

where Q, which characterizes the coupling between CDM
and the scalar field, is defined as

Q ≡ − 1√
−g

δ(
√
−ḡLc)

δφ
= ∇µW

µ − Z , (6)

with

Z =
1

2A

[{
Aφ +

AXX(Aφ − 2BφX)

A−AXX + 2BXX2

}
T(c)

+

{
Bφ +

BXX(Aφ − 2BφX)

A−AXX + 2BXX2

}
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(c)∂µφ∂νφ

]
, (7)
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−ḡLc)

δφ
= ∇µW

µ − Z , (6)

with

Z =
1

2A

[{
Aφ +

AXX(Aφ − 2BφX)

A−AXX + 2BXX2

}
T(c)

+

{
Bφ +

BXX(Aφ − 2BφX)

A−AXX + 2BXX2

}
Tµν
(c)∂µφ∂νφ

]
, (7)

Wµ =
1

2A

[
2B Tµν

(c)∂νφ− A− 2BX

A−AXX + 2BXX2

×
(
AXT(c) +BXTαβ

(c) ∂αφ∂βφ
)
∂µφ

]
, (8)

where Uφ = ∂U/∂φ , UX = ∂U/∂X for U = A ,B . By
the use of Eq. (5), the energy-momentum conservation
for CDM and total matter can be recast as

∇µT (c)
µν = ∇µT (m)

µν = −Q ∂νφ . (9)

Basic equations.
We work on a spatially flat FLRWmetric in Newtonian

gauge,

ds2 = −[1 + 2Φ(t,x)]dt2 + a2(t)[1− 2Ψ(t,x)]dx2 , (10)

and define the background and perturbations of the
energy-momentum tensor for the baryon, the dark mat-
ter and the total matter as

T 0
(I)0 = −ρI(t)

[
1 + δI(t,x)

]
, (11)

T 0
(I)i = −ρI(t) ∂ivI(t,x) , (12)

and (otherwise)= 0 1. Based on these equations, we can
find relations as

δm = ωcδc + ωbδb , (13)

vm = ωcvc + ωbvb , (14)

where ωI = ρI/ρm. We also split the scalar field as
φ(t,x) → φ(t) + δφ(t,x). The background part of the
Einstein equation gives

H2 =
1

3M2
Pl

(
ρc + ρb + Λ+

1

2
φ̇2 + V

)
, (15)

3H2 + 2Ḣ =
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where gµν is the original frame metric, and A(φ, X) and
B(φ, X) are respectively called conformal and disformal
factors, which are functions of the scalar field φ and its
kinetic term X ≡ −gµν∂µφ∂νφ/2. Here and hereafter, φ
is a generic scalar field, and we do not specify it though
the case with φ being responsible for dark energy is the
most interesting. The action is given by

S =

∫
d4x

√
−g

[
M2

Pl

2
(R[g]− 2Λ) + Lφ[g,φ]

]
+ Sm ,(2)
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a total matter action. For simplicity, we consider the
canonical scalar field: Lφ = − 1
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2−V (φ) and assume

the scalar field does not modify the gravitational sector,
i.e., the absence of kinetic braiding [16]. As for the matter
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through the barred metric ḡµν defined in (1). The total
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where Sb and Sc represent the actions for baryon and
CDM, respectively. Due to the non-minimal coupling
between the dark matter and the scalar field, baryonic
matter and dark matter do not move in the same way.
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µν and the scalar sector

T (φ)
µν is conserved as ∇µ(T (m)

µν + T (φ)
µν ) = 0 . The energy-

momentum conservation for baryon also takes the famil-

iar form, ∇µT (b)
µν = 0. On the other hand, the energy-

momentum tensors for the scalar field and dark matter
no longer satisfy the conservation law individually, and

it rather takes the following form, ∇µT (c)
µν = −∇µT (φ)

µν .
The scalar equation is given by

✷φ− Vφ = Q , (5)

where Q, which characterizes the coupling between CDM
and the scalar field, is defined as

Q ≡ − 1√
−g

δ(
√
−ḡLc)

δφ
= ∇µW

µ − Z , (6)

with

Z =
1

2A

[{
Aφ +

AXX(Aφ − 2BφX)

A−AXX + 2BXX2

}
T(c)

+

{
Bφ +

BXX(Aφ − 2BφX)

A−AXX + 2BXX2

}
Tµν
(c)∂µφ∂νφ

]
, (7)

Wµ =
1

2A

[
2B Tµν

(c)∂νφ− A− 2BX

A−AXX + 2BXX2

×
(
AXT(c) +BXTαβ

(c) ∂αφ∂βφ
)
∂µφ

]
, (8)

where Uφ = ∂U/∂φ , UX = ∂U/∂X for U = A ,B . By
the use of Eq. (5), the energy-momentum conservation
for CDM and total matter can be recast as

∇µT (c)
µν = ∇µT (m)

µν = −Q ∂νφ . (9)

Basic equations.
We work on a spatially flat FLRWmetric in Newtonian

gauge,

ds2 = −[1 + 2Φ(t,x)]dt2 + a2(t)[1− 2Ψ(t,x)]dx2 , (10)

and define the background and perturbations of the
energy-momentum tensor for the baryon, the dark mat-
ter and the total matter as

T 0
(I)0 = −ρI(t)

[
1 + δI(t,x)

]
, (11)

T 0
(I)i = −ρI(t) ∂ivI(t,x) , (12)

and (otherwise)= 0 1. Based on these equations, we can
find relations as

δm = ωcδc + ωbδb , (13)

vm = ωcvc + ωbvb , (14)

where ωI = ρI/ρm. We also split the scalar field as
φ(t,x) → φ(t) + δφ(t,x). The background part of the
Einstein equation gives

H2 =
1

3M2
Pl

(
ρc + ρb + Λ+

1

2
φ̇2 + V

)
, (15)

3H2 + 2Ḣ =
1

M2
Pl

(
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2
φ̇2 + V

)
. (16)

The background equation of motion for φ (5) yields

φ̈+ 3Hφ̇+ Vφ = −Q0 , (17)

1 Note that the pressureless feature of the CDM is ro-
bust at least at first order of perturbations even if
we take other definitions of energy momentum tensor

such as T
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µν = −(2/

√
−g)δ(

√
−gLc)/δgµν and T̃
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where gµν is the original frame metric, and A(φ, X) and
B(φ, X) are respectively called conformal and disformal
factors, which are functions of the scalar field φ and its
kinetic term X ≡ −gµν∂µφ∂νφ/2. Here and hereafter, φ
is a generic scalar field, and we do not specify it though
the case with φ being responsible for dark energy is the
most interesting. The action is given by

S =

∫
d4x

√
−g

[
M2

Pl

2
(R[g]− 2Λ) + Lφ[g,φ]

]
+ Sm ,(2)

where Lφ represents a Lagrangian for scalar field and Sm

a total matter action. For simplicity, we consider the
canonical scalar field: Lφ = − 1

2 (∂φ)
2−V (φ) and assume

the scalar field does not modify the gravitational sector,
i.e., the absence of kinetic braiding [16]. As for the matter
sector, we assume that the baryon is minimally coupled
for simplicity while the CDM couples with the scalar field
through the barred metric ḡµν defined in (1). The total
matter action is thus given by

Sm = Sb + Sc

=

∫
d4x

[√
−gLb[gµν ,ψb] +

√
−ḡLc[gµν ,ψc]

]
,(3)

where Sb and Sc represent the actions for baryon and
CDM, respectively. Due to the non-minimal coupling
between the dark matter and the scalar field, baryonic
matter and dark matter do not move in the same way.
The variation with respect to the metric gµν leads to

the Einstein equations as usual,

Gµν + Λgµν =
1

M2
Pl

(
T (b)
µν + T (c)

µν + T (φ)
µν

)
. (4)

Here and hereafter, T (I)
µν = − 2√
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δSI
δgµν and T (φ)
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− 2√
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δ(
√
−gLφ)
δgµν . The superscript I represents b, c or m

for baryon, dark matter and total matter, respectively.
The combination of the energy-momentum tensor for to-

tal matter T (m)
µν := T (b)

µν + T (c)
µν and the scalar sector

T (φ)
µν is conserved as ∇µ(T (m)

µν + T (φ)
µν ) = 0 . The energy-

momentum conservation for baryon also takes the famil-

iar form, ∇µT (b)
µν = 0. On the other hand, the energy-

momentum tensors for the scalar field and dark matter
no longer satisfy the conservation law individually, and

it rather takes the following form, ∇µT (c)
µν = −∇µT (φ)

µν .
The scalar equation is given by

✷φ− Vφ = Q , (5)

where Q, which characterizes the coupling between CDM
and the scalar field, is defined as

Q ≡ − 1√
−g

δ(
√
−ḡLc)

δφ
= ∇µW

µ − Z , (6)

with

Z =
1
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[{
Aφ +

AXX(Aφ − 2BφX)

A−AXX + 2BXX2

}
T(c)

+

{
Bφ +

BXX(Aφ − 2BφX)

A−AXX + 2BXX2

}
Tµν
(c)∂µφ∂νφ
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1
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(c)∂νφ− A− 2BX

A−AXX + 2BXX2

×
(
AXT(c) +BXTαβ

(c) ∂αφ∂βφ
)
∂µφ

]
, (8)

where Uφ = ∂U/∂φ , UX = ∂U/∂X for U = A ,B . By
the use of Eq. (5), the energy-momentum conservation
for CDM and total matter can be recast as

∇µT (c)
µν = ∇µT (m)

µν = −Q ∂νφ . (9)

Basic equations.
We work on a spatially flat FLRWmetric in Newtonian

gauge,

ds2 = −[1 + 2Φ(t,x)]dt2 + a2(t)[1− 2Ψ(t,x)]dx2 , (10)

and define the background and perturbations of the
energy-momentum tensor for the baryon, the dark mat-
ter and the total matter as

T 0
(I)0 = −ρI(t)

[
1 + δI(t,x)

]
, (11)

T 0
(I)i = −ρI(t) ∂ivI(t,x) , (12)

and (otherwise)= 0 1. Based on these equations, we can
find relations as

δm = ωcδc + ωbδb , (13)

vm = ωcvc + ωbvb , (14)

where ωI = ρI/ρm. We also split the scalar field as
φ(t,x) → φ(t) + δφ(t,x). The background part of the
Einstein equation gives

H2 =
1

3M2
Pl

(
ρc + ρb + Λ+

1

2
φ̇2 + V

)
, (15)

3H2 + 2Ḣ =
1

M2
Pl

(
Λ− 1

2
φ̇2 + V

)
. (16)

The background equation of motion for φ (5) yields

φ̈+ 3Hφ̇+ Vφ = −Q0 , (17)

1 Note that the pressureless feature of the CDM is ro-
bust at least at first order of perturbations even if
we take other definitions of energy momentum tensor

such as T
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√
−g)δ(
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where gµν is the original frame metric, and A(φ, X) and
B(φ, X) are respectively called conformal and disformal
factors, which are functions of the scalar field φ and its
kinetic term X ≡ −gµν∂µφ∂νφ/2. Here and hereafter, φ
is a generic scalar field, and we do not specify it though
the case with φ being responsible for dark energy is the
most interesting. The action is given by

S =

∫
d4x

√
−g

[
M2

Pl

2
(R[g]− 2Λ) + Lφ[g,φ]

]
+ Sm ,(2)

where Lφ represents a Lagrangian for scalar field and Sm

a total matter action. For simplicity, we consider the
canonical scalar field: Lφ = − 1

2 (∂φ)
2−V (φ) and assume

the scalar field does not modify the gravitational sector,
i.e., the absence of kinetic braiding [16]. As for the matter
sector, we assume that the baryon is minimally coupled
for simplicity while the CDM couples with the scalar field
through the barred metric ḡµν defined in (1). The total
matter action is thus given by

Sm = Sb + Sc

=

∫
d4x

[√
−gLb[gµν ,ψb] +

√
−ḡLc[gµν ,ψc]

]
,(3)

where Sb and Sc represent the actions for baryon and
CDM, respectively. Due to the non-minimal coupling
between the dark matter and the scalar field, baryonic
matter and dark matter do not move in the same way.
The variation with respect to the metric gµν leads to

the Einstein equations as usual,

Gµν + Λgµν =
1

M2
Pl

(
T (b)
µν + T (c)

µν + T (φ)
µν

)
. (4)

Here and hereafter, T (I)
µν = − 2√

−g
δSI
δgµν and T (φ)

µν =

− 2√
−g

δ(
√
−gLφ)
δgµν . The superscript I represents b, c or m

for baryon, dark matter and total matter, respectively.
The combination of the energy-momentum tensor for to-

tal matter T (m)
µν := T (b)

µν + T (c)
µν and the scalar sector

T (φ)
µν is conserved as ∇µ(T (m)

µν + T (φ)
µν ) = 0 . The energy-

momentum conservation for baryon also takes the famil-

iar form, ∇µT (b)
µν = 0. On the other hand, the energy-

momentum tensors for the scalar field and dark matter
no longer satisfy the conservation law individually, and

it rather takes the following form, ∇µT (c)
µν = −∇µT (φ)

µν .
The scalar equation is given by

✷φ− Vφ = Q , (5)

where Q, which characterizes the coupling between CDM
and the scalar field, is defined as

Q ≡ − 1√
−g

δ(
√
−ḡLc)

δφ
= ∇µW

µ − Z , (6)

with

Z =
1

2A

[{
Aφ +

AXX(Aφ − 2BφX)

A−AXX + 2BXX2

}
T(c)

+

{
Bφ +

BXX(Aφ − 2BφX)

A−AXX + 2BXX2

}
Tµν
(c)∂µφ∂νφ

]
, (7)

Wµ =
1

2A

[
2B Tµν

(c)∂νφ− A− 2BX

A−AXX + 2BXX2

×
(
AXT(c) +BXTαβ

(c) ∂αφ∂βφ
)
∂µφ

]
, (8)

where Uφ = ∂U/∂φ , UX = ∂U/∂X for U = A ,B . By
the use of Eq. (5), the energy-momentum conservation
for CDM and total matter can be recast as

∇µT (c)
µν = ∇µT (m)

µν = −Q ∂νφ . (9)

Basic equations.
We work on a spatially flat FLRWmetric in Newtonian

gauge,

ds2 = −[1 + 2Φ(t,x)]dt2 + a2(t)[1− 2Ψ(t,x)]dx2 , (10)

and define the background and perturbations of the
energy-momentum tensor for the baryon, the dark mat-
ter and the total matter as

T 0
(I)0 = −ρI(t)

[
1 + δI(t,x)

]
, (11)

T 0
(I)i = −ρI(t) ∂ivI(t,x) , (12)

and (otherwise)= 0 1. Based on these equations, we can
find relations as

δm = ωcδc + ωbδb , (13)

vm = ωcvc + ωbvb , (14)

where ωI = ρI/ρm. We also split the scalar field as
φ(t,x) → φ(t) + δφ(t,x). The background part of the
Einstein equation gives

H2 =
1

3M2
Pl

(
ρc + ρb + Λ+

1

2
φ̇2 + V

)
, (15)

3H2 + 2Ḣ =
1

M2
Pl

(
Λ− 1

2
φ̇2 + V

)
. (16)

The background equation of motion for φ (5) yields

φ̈+ 3Hφ̇+ Vφ = −Q0 , (17)

1 Note that the pressureless feature of the CDM is ro-
bust at least at first order of perturbations even if
we take other definitions of energy momentum tensor

such as T
(c)
µν = −(2/

√
−g)δ(

√
−gLc)/δgµν and T̃

(c)
µν =

−(2/
√
−g)δ(

√
−gLc)/δgµν .
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where gµν is the original frame metric, and A(φ, X) and
B(φ, X) are respectively called conformal and disformal
factors, which are functions of the scalar field φ and its
kinetic term X ≡ −gµν∂µφ∂νφ/2. Here and hereafter, φ
is a generic scalar field, and we do not specify it though
the case with φ being responsible for dark energy is the
most interesting. The action is given by

S =

∫
d4x

√
−g

[
M2

Pl

2
(R[g]− 2Λ) + Lφ[g,φ]

]
+ Sm ,(2)

where Lφ represents a Lagrangian for scalar field and Sm

a total matter action. For simplicity, we consider the
canonical scalar field: Lφ = − 1

2 (∂φ)
2−V (φ) and assume

the scalar field does not modify the gravitational sector,
i.e., the absence of kinetic braiding [16]. As for the matter
sector, we assume that the baryon is minimally coupled
for simplicity while the CDM couples with the scalar field
through the barred metric ḡµν defined in (1). The total
matter action is thus given by

Sm = Sb + Sc

=

∫
d4x

[√
−gLb[gµν ,ψb] +

√
−ḡLc[gµν ,ψc]

]
,(3)

where Sb and Sc represent the actions for baryon and
CDM, respectively. Due to the non-minimal coupling
between the dark matter and the scalar field, baryonic
matter and dark matter do not move in the same way.
The variation with respect to the metric gµν leads to

the Einstein equations as usual,

Gµν + Λgµν =
1

M2
Pl

(
T (b)
µν + T (c)

µν + T (φ)
µν

)
. (4)

Here and hereafter, T (I)
µν = − 2√

−g
δSI
δgµν and T (φ)

µν =

− 2√
−g

δ(
√
−gLφ)
δgµν . The superscript I represents b, c or m

for baryon, dark matter and total matter, respectively.
The combination of the energy-momentum tensor for to-

tal matter T (m)
µν := T (b)

µν + T (c)
µν and the scalar sector

T (φ)
µν is conserved as ∇µ(T (m)

µν + T (φ)
µν ) = 0 . The energy-

momentum conservation for baryon also takes the famil-

iar form, ∇µT (b)
µν = 0. On the other hand, the energy-

momentum tensors for the scalar field and dark matter
no longer satisfy the conservation law individually, and

it rather takes the following form, ∇µT (c)
µν = −∇µT (φ)

µν .
The scalar equation is given by

✷φ− Vφ = Q , (5)

where Q, which characterizes the coupling between CDM
and the scalar field, is defined as

Q ≡ − 1√
−g

δ(
√
−ḡLc)

δφ
= ∇µW

µ − Z , (6)

with

Z =
1

2A

[{
Aφ +

AXX(Aφ − 2BφX)

A−AXX + 2BXX2

}
T(c)

+

{
Bφ +

BXX(Aφ − 2BφX)

A−AXX + 2BXX2

}
Tµν
(c)∂µφ∂νφ

]
, (7)

Wµ =
1

2A

[
2B Tµν

(c)∂νφ− A− 2BX

A−AXX + 2BXX2

×
(
AXT(c) +BXTαβ

(c) ∂αφ∂βφ
)
∂µφ

]
, (8)

where Uφ = ∂U/∂φ , UX = ∂U/∂X for U = A ,B . By
the use of Eq. (5), the energy-momentum conservation
for CDM and total matter can be recast as

∇µT (c)
µν = ∇µT (m)

µν = −Q ∂νφ . (9)

Basic equations.
We work on a spatially flat FLRWmetric in Newtonian

gauge,

ds2 = −[1 + 2Φ(t,x)]dt2 + a2(t)[1− 2Ψ(t,x)]dx2 , (10)

and define the background and perturbations of the
energy-momentum tensor for the baryon, the dark mat-
ter and the total matter as

T 0
(I)0 = −ρI(t)

[
1 + δI(t,x)

]
, (11)

T 0
(I)i = −ρI(t) ∂ivI(t,x) , (12)

and (otherwise)= 0 1. Based on these equations, we can
find relations as

δm = ωcδc + ωbδb , (13)

vm = ωcvc + ωbvb , (14)

where ωI = ρI/ρm. We also split the scalar field as
φ(t,x) → φ(t) + δφ(t,x). The background part of the
Einstein equation gives

H2 =
1

3M2
Pl

(
ρc + ρb + Λ+

1

2
φ̇2 + V

)
, (15)

3H2 + 2Ḣ =
1

M2
Pl

(
Λ− 1

2
φ̇2 + V

)
. (16)

The background equation of motion for φ (5) yields

φ̈+ 3Hφ̇+ Vφ = −Q0 , (17)

1 Note that the pressureless feature of the CDM is ro-
bust at least at first order of perturbations even if
we take other definitions of energy momentum tensor

such as T
(c)
µν = −(2/

√
−g)δ(

√
−gLc)/δgµν and T̃

(c)
µν =

−(2/
√
−g)δ(

√
−gLc)/δgµν .

2

where gµν is the original frame metric, and A(φ, X) and
B(φ, X) are respectively called conformal and disformal
factors, which are functions of the scalar field φ and its
kinetic term X ≡ −gµν∂µφ∂νφ/2. Here and hereafter, φ
is a generic scalar field, and we do not specify it though
the case with φ being responsible for dark energy is the
most interesting. The action is given by

S =

∫
d4x

√
−g

[
M2

Pl

2
(R[g]− 2Λ) + Lφ[g,φ]

]
+ Sm ,(2)

where Lφ represents a Lagrangian for scalar field and Sm

a total matter action. For simplicity, we consider the
canonical scalar field: Lφ = − 1

2 (∂φ)
2−V (φ) and assume

the scalar field does not modify the gravitational sector,
i.e., the absence of kinetic braiding [16]. As for the matter
sector, we assume that the baryon is minimally coupled
for simplicity while the CDM couples with the scalar field
through the barred metric ḡµν defined in (1). The total
matter action is thus given by

Sm = Sb + Sc

=

∫
d4x

[√
−gLb[gµν ,ψb] +

√
−ḡLc[gµν ,ψc]

]
,(3)

where Sb and Sc represent the actions for baryon and
CDM, respectively. Due to the non-minimal coupling
between the dark matter and the scalar field, baryonic
matter and dark matter do not move in the same way.
The variation with respect to the metric gµν leads to

the Einstein equations as usual,

Gµν + Λgµν =
1

M2
Pl

(
T (b)
µν + T (c)

µν + T (φ)
µν

)
. (4)

Here and hereafter, T (I)
µν = − 2√

−g
δSI
δgµν and T (φ)

µν =

− 2√
−g

δ(
√
−gLφ)
δgµν . The superscript I represents b, c or m

for baryon, dark matter and total matter, respectively.
The combination of the energy-momentum tensor for to-

tal matter T (m)
µν := T (b)

µν + T (c)
µν and the scalar sector

T (φ)
µν is conserved as ∇µ(T (m)

µν + T (φ)
µν ) = 0 . The energy-

momentum conservation for baryon also takes the famil-

iar form, ∇µT (b)
µν = 0. On the other hand, the energy-

momentum tensors for the scalar field and dark matter
no longer satisfy the conservation law individually, and

it rather takes the following form, ∇µT (c)
µν = −∇µT (φ)

µν .
The scalar equation is given by

✷φ− Vφ = Q , (5)

where Q, which characterizes the coupling between CDM
and the scalar field, is defined as

Q ≡ − 1√
−g

δ(
√
−ḡLc)

δφ
= ∇µW

µ − Z , (6)

with

Z =
1

2A

[{
Aφ +

AXX(Aφ − 2BφX)

A−AXX + 2BXX2

}
T(c)

+

{
Bφ +

BXX(Aφ − 2BφX)

A−AXX + 2BXX2

}
Tµν
(c)∂µφ∂νφ

]
, (7)

Wµ =
1

2A

[
2B Tµν

(c)∂νφ− A− 2BX

A−AXX + 2BXX2

×
(
AXT(c) +BXTαβ

(c) ∂αφ∂βφ
)
∂µφ

]
, (8)

where Uφ = ∂U/∂φ , UX = ∂U/∂X for U = A ,B . By
the use of Eq. (5), the energy-momentum conservation
for CDM and total matter can be recast as

∇µT (c)
µν = ∇µT (m)

µν = −Q ∂νφ . (9)

Basic equations.
We work on a spatially flat FLRWmetric in Newtonian

gauge,

ds2 = −[1 + 2Φ(t,x)]dt2 + a2(t)[1− 2Ψ(t,x)]dx2 , (10)

and define the background and perturbations of the
energy-momentum tensor for the baryon, the dark mat-
ter and the total matter as

T 0
(I)0 = −ρI(t)

[
1 + δI(t,x)

]
, (11)

T 0
(I)i = −ρI(t) ∂ivI(t,x) , (12)

and (otherwise)= 0 1. Based on these equations, we can
find relations as

δm = ωcδc + ωbδb , (13)

vm = ωcvc + ωbvb , (14)

where ωI = ρI/ρm. We also split the scalar field as
φ(t,x) → φ(t) + δφ(t,x). The background part of the
Einstein equation gives

H2 =
1

3M2
Pl

(
ρc + ρb + Λ+

1

2
φ̇2 + V

)
, (15)

3H2 + 2Ḣ =
1

M2
Pl

(
Λ− 1

2
φ̇2 + V

)
. (16)

The background equation of motion for φ (5) yields

φ̈+ 3Hφ̇+ Vφ = −Q0 , (17)

1 Note that the pressureless feature of the CDM is ro-
bust at least at first order of perturbations even if
we take other definitions of energy momentum tensor

such as T
(c)
µν = −(2/
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−g)δ(
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−gLc)/δgµν and T̃

(c)
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where gµν is the original frame metric, and A(φ, X) and
B(φ, X) are respectively called conformal and disformal
factors, which are functions of the scalar field φ and its
kinetic term X ≡ −gµν∂µφ∂νφ/2. Here and hereafter, φ
is a generic scalar field, and we do not specify it though
the case with φ being responsible for dark energy is the
most interesting. The action is given by

S =

∫
d4x

√
−g

[
M2

Pl

2
(R[g]− 2Λ) + Lφ[g,φ]

]
+ Sm ,(2)

where Lφ represents a Lagrangian for scalar field and Sm

a total matter action. For simplicity, we consider the
canonical scalar field: Lφ = − 1

2 (∂φ)
2−V (φ) and assume

the scalar field does not modify the gravitational sector,
i.e., the absence of kinetic braiding [16]. As for the matter
sector, we assume that the baryon is minimally coupled
for simplicity while the CDM couples with the scalar field
through the barred metric ḡµν defined in (1). The total
matter action is thus given by

Sm = Sb + Sc

=

∫
d4x

[√
−gLb[gµν ,ψb] +

√
−ḡLc[gµν ,ψc]

]
,(3)

where Sb and Sc represent the actions for baryon and
CDM, respectively. Due to the non-minimal coupling
between the dark matter and the scalar field, baryonic
matter and dark matter do not move in the same way.
The variation with respect to the metric gµν leads to

the Einstein equations as usual,

Gµν + Λgµν =
1

M2
Pl

(
T (b)
µν + T (c)

µν + T (φ)
µν

)
. (4)

Here and hereafter, T (I)
µν = − 2√

−g
δSI
δgµν and T (φ)

µν =

− 2√
−g

δ(
√
−gLφ)
δgµν . The superscript I represents b, c or m

for baryon, dark matter and total matter, respectively.
The combination of the energy-momentum tensor for to-

tal matter T (m)
µν := T (b)

µν + T (c)
µν and the scalar sector

T (φ)
µν is conserved as ∇µ(T (m)

µν + T (φ)
µν ) = 0 . The energy-

momentum conservation for baryon also takes the famil-

iar form, ∇µT (b)
µν = 0. On the other hand, the energy-

momentum tensors for the scalar field and dark matter
no longer satisfy the conservation law individually, and

it rather takes the following form, ∇µT (c)
µν = −∇µT (φ)

µν .
The scalar equation is given by

✷φ− Vφ = Q , (5)

where Q, which characterizes the coupling between CDM
and the scalar field, is defined as

Q ≡ − 1√
−g

δ(
√
−ḡLc)

δφ
= ∇µW

µ − Z , (6)

with

Z =
1

2A

[{
Aφ +

AXX(Aφ − 2BφX)

A−AXX + 2BXX2

}
T(c)

+

{
Bφ +

BXX(Aφ − 2BφX)

A−AXX + 2BXX2

}
Tµν
(c)∂µφ∂νφ

]
, (7)

Wµ =
1

2A

[
2B Tµν

(c)∂νφ− A− 2BX

A−AXX + 2BXX2

×
(
AXT(c) +BXTαβ

(c) ∂αφ∂βφ
)
∂µφ

]
, (8)

where Uφ = ∂U/∂φ , UX = ∂U/∂X for U = A ,B . By
the use of Eq. (5), the energy-momentum conservation
for CDM and total matter can be recast as

∇µT (c)
µν = ∇µT (m)

µν = −Q ∂νφ . (9)

Basic equations.
We work on a spatially flat FLRWmetric in Newtonian

gauge,

ds2 = −[1 + 2Φ(t,x)]dt2 + a2(t)[1− 2Ψ(t,x)]dx2 , (10)

and define the background and perturbations of the
energy-momentum tensor for the baryon, the dark mat-
ter and the total matter as

T 0
(I)0 = −ρI(t)

[
1 + δI(t,x)

]
, (11)

T 0
(I)i = −ρI(t) ∂ivI(t,x) , (12)

and (otherwise)= 0 1. Based on these equations, we can
find relations as

δm = ωcδc + ωbδb , (13)

vm = ωcvc + ωbvb , (14)

where ωI = ρI/ρm. We also split the scalar field as
φ(t,x) → φ(t) + δφ(t,x). The background part of the
Einstein equation gives

H2 =
1

3M2
Pl

(
ρc + ρb + Λ+

1

2
φ̇2 + V

)
, (15)

3H2 + 2Ḣ =
1

M2
Pl

(
Λ− 1

2
φ̇2 + V

)
. (16)

The background equation of motion for φ (5) yields

φ̈+ 3Hφ̇+ Vφ = −Q0 , (17)

1 Note that the pressureless feature of the CDM is ro-
bust at least at first order of perturbations even if
we take other definitions of energy momentum tensor

such as T
(c)
µν = −(2/

√
−g)δ(

√
−gLc)/δgµν and T̃

(c)
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−(2/
√
−g)δ(

√
−gLc)/δgµν .
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where gµν is the original frame metric, and A(φ, X) and
B(φ, X) are respectively called conformal and disformal
factors, which are functions of the scalar field φ and its
kinetic term X ≡ −gµν∂µφ∂νφ/2. Here and hereafter, φ
is a generic scalar field, and we do not specify it though
the case with φ being responsible for dark energy is the
most interesting. The action is given by

S =

∫
d4x

√
−g

[
M2

Pl

2
(R[g]− 2Λ) + Lφ[g,φ]

]
+ Sm ,(2)

where Lφ represents a Lagrangian for scalar field and Sm

a total matter action. For simplicity, we consider the
canonical scalar field: Lφ = − 1

2 (∂φ)
2−V (φ) and assume

the scalar field does not modify the gravitational sector,
i.e., the absence of kinetic braiding [16]. As for the matter
sector, we assume that the baryon is minimally coupled
for simplicity while the CDM couples with the scalar field
through the barred metric ḡµν defined in (1). The total
matter action is thus given by

Sm = Sb + Sc

=

∫
d4x

[√
−gLb[gµν ,ψb] +

√
−ḡLc[gµν ,ψc]

]
,(3)

where Sb and Sc represent the actions for baryon and
CDM, respectively. Due to the non-minimal coupling
between the dark matter and the scalar field, baryonic
matter and dark matter do not move in the same way.
The variation with respect to the metric gµν leads to

the Einstein equations as usual,

Gµν + Λgµν =
1

M2
Pl

(
T (b)
µν + T (c)

µν + T (φ)
µν

)
. (4)

Here and hereafter, T (I)
µν = − 2√

−g
δSI
δgµν and T (φ)

µν =

− 2√
−g

δ(
√
−gLφ)
δgµν . The superscript I represents b, c or m

for baryon, dark matter and total matter, respectively.
The combination of the energy-momentum tensor for to-

tal matter T (m)
µν := T (b)

µν + T (c)
µν and the scalar sector

T (φ)
µν is conserved as ∇µ(T (m)

µν + T (φ)
µν ) = 0 . The energy-

momentum conservation for baryon also takes the famil-

iar form, ∇µT (b)
µν = 0. On the other hand, the energy-

momentum tensors for the scalar field and dark matter
no longer satisfy the conservation law individually, and

it rather takes the following form, ∇µT (c)
µν = −∇µT (φ)

µν .
The scalar equation is given by

✷φ− Vφ = Q , (5)

where Q, which characterizes the coupling between CDM
and the scalar field, is defined as

Q ≡ − 1√
−g

δ(
√
−ḡLc)

δφ
= ∇µW

µ − Z , (6)

with

Z =
1

2A

[{
Aφ +

AXX(Aφ − 2BφX)

A−AXX + 2BXX2

}
T(c)

+

{
Bφ +

BXX(Aφ − 2BφX)

A−AXX + 2BXX2

}
Tµν
(c)∂µφ∂νφ

]
, (7)

Wµ =
1

2A

[
2B Tµν

(c)∂νφ− A− 2BX

A−AXX + 2BXX2

×
(
AXT(c) +BXTαβ

(c) ∂αφ∂βφ
)
∂µφ

]
, (8)

where Uφ = ∂U/∂φ , UX = ∂U/∂X for U = A ,B . By
the use of Eq. (5), the energy-momentum conservation
for CDM and total matter can be recast as

∇µT (c)
µν = ∇µT (m)

µν = −Q ∂νφ . (9)

Basic equations.
We work on a spatially flat FLRWmetric in Newtonian

gauge,

ds2 = −[1 + 2Φ(t,x)]dt2 + a2(t)[1− 2Ψ(t,x)]dx2 , (10)

and define the background and perturbations of the
energy-momentum tensor for the baryon, the dark mat-
ter and the total matter as

T 0
(I)0 = −ρI(t)

[
1 + δI(t,x)

]
, (11)

T 0
(I)i = −ρI(t) ∂ivI(t,x) , (12)

and (otherwise)= 0 1. Based on these equations, we can
find relations as

δm = ωcδc + ωbδb , (13)

vm = ωcvc + ωbvb , (14)

where ωI = ρI/ρm. We also split the scalar field as
φ(t,x) → φ(t) + δφ(t,x). The background part of the
Einstein equation gives

H2 =
1

3M2
Pl

(
ρc + ρb + Λ+

1

2
φ̇2 + V

)
, (15)

3H2 + 2Ḣ =
1

M2
Pl

(
Λ− 1

2
φ̇2 + V

)
. (16)

The background equation of motion for φ (5) yields

φ̈+ 3Hφ̇+ Vφ = −Q0 , (17)

1 Note that the pressureless feature of the CDM is ro-
bust at least at first order of perturbations even if
we take other definitions of energy momentum tensor

such as T
(c)
µν = −(2/

√
−g)δ(

√
−gLc)/δgµν and T̃

(c)
µν =
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−g)δ(
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where gµν is the original frame metric, and A(φ, X) and
B(φ, X) are respectively called conformal and disformal
factors, which are functions of the scalar field φ and its
kinetic term X ≡ −gµν∂µφ∂νφ/2. Here and hereafter, φ
is a generic scalar field, and we do not specify it though
the case with φ being responsible for dark energy is the
most interesting. The action is given by

S =

∫
d4x

√
−g

[
M2

Pl

2
(R[g]− 2Λ) + Lφ[g,φ]

]
+ Sm ,(2)

where Lφ represents a Lagrangian for scalar field and Sm

a total matter action. For simplicity, we consider the
canonical scalar field: Lφ = − 1

2 (∂φ)
2−V (φ) and assume

the scalar field does not modify the gravitational sector,
i.e., the absence of kinetic braiding [16]. As for the matter
sector, we assume that the baryon is minimally coupled
for simplicity while the CDM couples with the scalar field
through the barred metric ḡµν defined in (1). The total
matter action is thus given by

Sm = Sb + Sc

=

∫
d4x

[√
−gLb[gµν ,ψb] +

√
−ḡLc[gµν ,ψc]

]
,(3)

where Sb and Sc represent the actions for baryon and
CDM, respectively. Due to the non-minimal coupling
between the dark matter and the scalar field, baryonic
matter and dark matter do not move in the same way.
The variation with respect to the metric gµν leads to

the Einstein equations as usual,

Gµν + Λgµν =
1

M2
Pl

(
T (b)
µν + T (c)

µν + T (φ)
µν

)
. (4)

Here and hereafter, T (I)
µν = − 2√

−g
δSI
δgµν and T (φ)

µν =

− 2√
−g

δ(
√
−gLφ)
δgµν . The superscript I represents b, c or m

for baryon, dark matter and total matter, respectively.
The combination of the energy-momentum tensor for to-

tal matter T (m)
µν := T (b)

µν + T (c)
µν and the scalar sector

T (φ)
µν is conserved as ∇µ(T (m)

µν + T (φ)
µν ) = 0 . The energy-

momentum conservation for baryon also takes the famil-

iar form, ∇µT (b)
µν = 0. On the other hand, the energy-

momentum tensors for the scalar field and dark matter
no longer satisfy the conservation law individually, and

it rather takes the following form, ∇µT (c)
µν = −∇µT (φ)

µν .
The scalar equation is given by

✷φ− Vφ = Q , (5)

where Q, which characterizes the coupling between CDM
and the scalar field, is defined as

Q ≡ − 1√
−g

δ(
√
−ḡLc)

δφ
= ∇µW

µ − Z , (6)

with

Z =
1

2A

[{
Aφ +

AXX(Aφ − 2BφX)

A−AXX + 2BXX2

}
T(c)

+

{
Bφ +

BXX(Aφ − 2BφX)

A−AXX + 2BXX2

}
Tµν
(c)∂µφ∂νφ

]
, (7)

Wµ =
1

2A

[
2B Tµν

(c)∂νφ− A− 2BX

A−AXX + 2BXX2

×
(
AXT(c) +BXTαβ

(c) ∂αφ∂βφ
)
∂µφ

]
, (8)

where Uφ = ∂U/∂φ , UX = ∂U/∂X for U = A ,B . By
the use of Eq. (5), the energy-momentum conservation
for CDM and total matter can be recast as

∇µT (c)
µν = ∇µT (m)

µν = −Q ∂νφ . (9)

Basic equations.
We work on a spatially flat FLRWmetric in Newtonian

gauge,

ds2 = −[1 + 2Φ(t,x)]dt2 + a2(t)[1− 2Ψ(t,x)]dx2 , (10)

and define the background and perturbations of the
energy-momentum tensor for the baryon, the dark mat-
ter and the total matter as

T 0
(I)0 = −ρI(t)

[
1 + δI(t,x)

]
, (11)

T 0
(I)i = −ρI(t) ∂ivI(t,x) , (12)

and (otherwise)= 0 1. Based on these equations, we can
find relations as

δm = ωcδc + ωbδb , (13)

vm = ωcvc + ωbvb , (14)

where ωI = ρI/ρm. We also split the scalar field as
φ(t,x) → φ(t) + δφ(t,x). The background part of the
Einstein equation gives

H2 =
1

3M2
Pl

(
ρc + ρb + Λ+

1

2
φ̇2 + V

)
, (15)

3H2 + 2Ḣ =
1

M2
Pl

(
Λ− 1

2
φ̇2 + V

)
. (16)

The background equation of motion for φ (5) yields

φ̈+ 3Hφ̇+ Vφ = −Q0 , (17)

1 Note that the pressureless feature of the CDM is ro-
bust at least at first order of perturbations even if
we take other definitions of energy momentum tensor

such as T
(c)
µν = −(2/

√
−g)δ(

√
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where gµν is the original frame metric, and A(φ, X) and
B(φ, X) are respectively called conformal and disformal
factors, which are functions of the scalar field φ and its
kinetic term X ≡ −gµν∂µφ∂νφ/2. Here and hereafter, φ
is a generic scalar field, and we do not specify it though
the case with φ being responsible for dark energy is the
most interesting. The action is given by

S =

∫
d4x

√
−g

[
M2

Pl

2
(R[g]− 2Λ) + Lφ[g,φ]

]
+ Sm ,(2)

where Lφ represents a Lagrangian for scalar field and Sm

a total matter action. For simplicity, we consider the
canonical scalar field: Lφ = − 1

2 (∂φ)
2−V (φ) and assume

the scalar field does not modify the gravitational sector,
i.e., the absence of kinetic braiding [16]. As for the matter
sector, we assume that the baryon is minimally coupled
for simplicity while the CDM couples with the scalar field
through the barred metric ḡµν defined in (1). The total
matter action is thus given by

Sm = Sb + Sc

=

∫
d4x

[√
−gLb[gµν ,ψb] +

√
−ḡLc[gµν ,ψc]

]
,(3)

where Sb and Sc represent the actions for baryon and
CDM, respectively. Due to the non-minimal coupling
between the dark matter and the scalar field, baryonic
matter and dark matter do not move in the same way.
The variation with respect to the metric gµν leads to

the Einstein equations as usual,

Gµν + Λgµν =
1

M2
Pl

(
T (b)
µν + T (c)

µν + T (φ)
µν

)
. (4)

Here and hereafter, T (I)
µν = − 2√

−g
δSI
δgµν and T (φ)

µν =

− 2√
−g

δ(
√
−gLφ)
δgµν . The superscript I represents b, c or m

for baryon, dark matter and total matter, respectively.
The combination of the energy-momentum tensor for to-

tal matter T (m)
µν := T (b)

µν + T (c)
µν and the scalar sector

T (φ)
µν is conserved as ∇µ(T (m)

µν + T (φ)
µν ) = 0 . The energy-

momentum conservation for baryon also takes the famil-

iar form, ∇µT (b)
µν = 0. On the other hand, the energy-

momentum tensors for the scalar field and dark matter
no longer satisfy the conservation law individually, and

it rather takes the following form, ∇µT (c)
µν = −∇µT (φ)

µν .
The scalar equation is given by

✷φ− Vφ = Q , (5)

where Q, which characterizes the coupling between CDM
and the scalar field, is defined as

Q ≡ − 1√
−g

δ(
√
−ḡLc)

δφ
= ∇µW

µ − Z , (6)

with

Z =
1

2A

[{
Aφ +

AXX(Aφ − 2BφX)

A−AXX + 2BXX2

}
T(c)

+

{
Bφ +

BXX(Aφ − 2BφX)

A−AXX + 2BXX2

}
Tµν
(c)∂µφ∂νφ

]
, (7)

Wµ =
1

2A

[
2B Tµν

(c)∂νφ− A− 2BX

A−AXX + 2BXX2

×
(
AXT(c) +BXTαβ

(c) ∂αφ∂βφ
)
∂µφ

]
, (8)

where Uφ = ∂U/∂φ , UX = ∂U/∂X for U = A ,B . By
the use of Eq. (5), the energy-momentum conservation
for CDM and total matter can be recast as

∇µT (c)
µν = ∇µT (m)

µν = −Q ∂νφ . (9)

Basic equations.
We work on a spatially flat FLRWmetric in Newtonian

gauge,

ds2 = −[1 + 2Φ(t,x)]dt2 + a2(t)[1− 2Ψ(t,x)]dx2 , (10)

and define the background and perturbations of the
energy-momentum tensor for the baryon, the dark mat-
ter and the total matter as

T 0
(I)0 = −ρI(t)

[
1 + δI(t,x)

]
, (11)

T 0
(I)i = −ρI(t) ∂ivI(t,x) , (12)

and (otherwise)= 0 1. Based on these equations, we can
find relations as

δm = ωcδc + ωbδb , (13)

vm = ωcvc + ωbvb , (14)

where ωI = ρI/ρm. We also split the scalar field as
φ(t,x) → φ(t) + δφ(t,x). The background part of the
Einstein equation gives

H2 =
1

3M2
Pl

(
ρc + ρb + Λ+

1

2
φ̇2 + V

)
, (15)

3H2 + 2Ḣ =
1

M2
Pl

(
Λ− 1

2
φ̇2 + V

)
. (16)

The background equation of motion for φ (5) yields

φ̈+ 3Hφ̇+ Vφ = −Q0 , (17)

1 Note that the pressureless feature of the CDM is ro-
bust at least at first order of perturbations even if
we take other definitions of energy momentum tensor

such as T
(c)
µν = −(2/

√
−g)δ(
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where gµν is the original frame metric, and A(φ, X) and
B(φ, X) are respectively called conformal and disformal
factors, which are functions of the scalar field φ and its
kinetic term X ≡ −gµν∂µφ∂νφ/2. Here and hereafter, φ
is a generic scalar field, and we do not specify it though
the case with φ being responsible for dark energy is the
most interesting. The action is given by

S =

∫
d4x

√
−g

[
M2

Pl

2
(R[g]− 2Λ) + Lφ[g,φ]

]
+ Sm ,(2)

where Lφ represents a Lagrangian for scalar field and Sm

a total matter action. For simplicity, we consider the
canonical scalar field: Lφ = − 1

2 (∂φ)
2−V (φ) and assume

the scalar field does not modify the gravitational sector,
i.e., the absence of kinetic braiding [16]. As for the matter
sector, we assume that the baryon is minimally coupled
for simplicity while the CDM couples with the scalar field
through the barred metric ḡµν defined in (1). The total
matter action is thus given by

Sm = Sb + Sc

=

∫
d4x

[√
−gLb[gµν ,ψb] +

√
−ḡLc[gµν ,ψc]

]
,(3)

where Sb and Sc represent the actions for baryon and
CDM, respectively. Due to the non-minimal coupling
between the dark matter and the scalar field, baryonic
matter and dark matter do not move in the same way.
The variation with respect to the metric gµν leads to

the Einstein equations as usual,

Gµν + Λgµν =
1

M2
Pl

(
T (b)
µν + T (c)

µν + T (φ)
µν

)
. (4)

Here and hereafter, T (I)
µν = − 2√

−g
δSI
δgµν and T (φ)

µν =

− 2√
−g

δ(
√
−gLφ)
δgµν . The superscript I represents b, c or m

for baryon, dark matter and total matter, respectively.
The combination of the energy-momentum tensor for to-

tal matter T (m)
µν := T (b)

µν + T (c)
µν and the scalar sector

T (φ)
µν is conserved as ∇µ(T (m)

µν + T (φ)
µν ) = 0 . The energy-

momentum conservation for baryon also takes the famil-

iar form, ∇µT (b)
µν = 0. On the other hand, the energy-

momentum tensors for the scalar field and dark matter
no longer satisfy the conservation law individually, and

it rather takes the following form, ∇µT (c)
µν = −∇µT (φ)

µν .
The scalar equation is given by
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1

M2
Pl

(
Λ− 1

2
φ̇2 + V

)
. (16)

The background equation of motion for φ (5) yields
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−ḡLc)

δφ
= ∇µW

µ − Z , (6)

with

Z =
1

2A

[{
Aφ +

AXX(Aφ − 2BφX)

A−AXX + 2BXX2

}
T(c)

+

{
Bφ +

BXX(Aφ − 2BφX)

A−AXX + 2BXX2

}
Tµν
(c)∂µφ∂νφ

]
, (7)

Wµ =
1

2A

[
2B Tµν

(c)∂νφ− A− 2BX

A−AXX + 2BXX2

×
(
AXT(c) +BXTαβ

(c) ∂αφ∂βφ
)
∂µφ

]
, (8)

where Uφ = ∂U/∂φ , UX = ∂U/∂X for U = A ,B . By
the use of Eq. (5), the energy-momentum conservation
for CDM and total matter can be recast as

∇µT (c)
µν = ∇µT (m)

µν = −Q ∂νφ . (9)

Basic equations.
We work on a spatially flat FLRWmetric in Newtonian

gauge,

ds2 = −[1 + 2Φ(t,x)]dt2 + a2(t)[1− 2Ψ(t,x)]dx2 , (10)

and define the background and perturbations of the
energy-momentum tensor for the baryon, the dark mat-
ter and the total matter as

T 0
(I)0 = −ρI(t)

[
1 + δI(t,x)

]
, (11)

T 0
(I)i = −ρI(t) ∂ivI(t,x) , (12)

and (otherwise)= 0 1. Based on these equations, we can
find relations as

δm = ωcδc + ωbδb , (13)

vm = ωcvc + ωbvb , (14)

where ωI = ρI/ρm. We also split the scalar field as
φ(t,x) → φ(t) + δφ(t,x). The background part of the
Einstein equation gives

H2 =
1

3M2
Pl

(
ρc + ρb + Λ+

1

2
φ̇2 + V

)
, (15)

3H2 + 2Ḣ =
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This is a generalization of the Kaiser formula. In fact,
in the minimal coupling case, we have Dm = Dc = Db

and f eff
m = fm = f eff

c = fc = fb, and hence Eq. (39)
is reduced to the standard Kaiser formula. However, we
found that in the presence of the coupling between the
CDM and the scalar sector we have no longer the relation
f eff
m = fm as we have discussed, and it means that the
RSDs are not trustable probes of growth of structure. It
is notable that the RSDs cannot provide the true value of
the growth rate fm even in the simple case where the con-
formal and disformal factors depend only on φ. Since in
this case, the deviation from the standard formula is pro-
portional to Q0, this effect is suppressed when the back-
ground evolution of the dark matter is almost same as the
one of the baryon. On the other hand, there is a wider
room for sizable modification of the standard Kaiser for-
mula in our general setup; even when either Q0 or the
baryonic contamination is negligibly small, f eff

m can differ
from fm by O(1). To see this clearly, let us expand the
formula (40) in terms of the baryon-CDM ratio to neglect
the ambiguity from the baryon contribution. The leading
term gives βeff ≈ f eff

c /bg = fc/bg+∆fc/bg. This immedi-
ately shows the single-redshift RSDs measurements can
not give a constraint on the linear growth rate fc unless
the contributions from the couplings ∆fc is fixed by us-
ing other observables 3. This fact demonstrates that one
has to keep this new effect in mind when testing beyond
ΛCDM theories by the RSDs measurements. Even if the
growth index γ ≈ 0.55 is obtained from RSDs in future
galaxy survey, it is still possible that the true theory is
different from the standard ΛCDM model. One way to
obtain the actual growth rate of large-scale structure is
to directly observe the time-evolution of structure by e.g.
multiple redshift observations of galaxy power spectrum.
In fact, we have a strong degeneracy between the growth
of large scale structure and the redshift-dependence of
the linear bias. Thus, to measure fm by multiple red-
shift observations, we need to fix the bias for each red-
shift by using other observations, i.e., cross-correlation
between the clustering of galaxies and weak lensing (see,
e.g., [13]). After evaluating the actual growth rate, one
can compare the actual and effective growth rates to con-
strain the couplings between the CDM and scalar field.

Conclusion.

We have shown that the additional interaction me-
diated by the scalar field that operates only between
dark matter through conformal and disformal couplings

3 The model considered in Ref. [18] is described by two parame-
ters, the equation of state w and the (background) energy trans-
fer parameter ξ (δQ in our analysis is neglected in [18]). Once
the constraints on background dynamics from the observations
such as type Ia supernovae and CMB are taken into account,
only ξ characterizes both the actual growth rate fc/bg and the
deviation ∆fc/bg. Thus in such a model, it is enough to measure
the single-redshift RSDs, however, this does not hold in a general
setup.

changes the continuity and Euler equations for cosmo-
logical perturbations in a non-trivial manner and inves-
tigated its impact on RSDs measurements in galaxy sur-
vey. We found that the effects of such modifications
appear even at sub-horizon scales in the presence of φ
and X(= −gµν∂µφ∂νφ/2)-dependence of the conformal
and/or disformal couplings. The effective linear growth
rate, which is inferred from measurements of the pecu-
liar velocities of the distributed galaxies, no longer corre-
sponds to the logarithmic time derivative of the density
perturbation and is rather characterized by both the den-
sity perturbations and their derivatives for each species
in general situation. In other words, the information of
the coupling is encoded in the peculiar velocity fields and
the true value of the growth rate of large-scale structure
cannot necessarily be constrained by the single-redshift
RSDs measurements. It can be extracted by using mul-
tiple power spectra of the galaxy distribution at different
redshift. This fact will play a vital role of measuring the
linear growth rate fm by the RSDs measurement, and
it will provide us a rich information of dark matter and
dark energy.
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m = fm as we have discussed, and it means that the
RSDs are not trustable probes of growth of structure. It
is notable that the RSDs cannot provide the true value of
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formal and disformal factors depend only on φ. Since in
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term gives βeff ≈ f eff

c /bg = fc/bg+∆fc/bg. This immedi-
ately shows the single-redshift RSDs measurements can
not give a constraint on the linear growth rate fc unless
the contributions from the couplings ∆fc is fixed by us-
ing other observables 3. This fact demonstrates that one
has to keep this new effect in mind when testing beyond
ΛCDM theories by the RSDs measurements. Even if the
growth index γ ≈ 0.55 is obtained from RSDs in future
galaxy survey, it is still possible that the true theory is
different from the standard ΛCDM model. One way to
obtain the actual growth rate of large-scale structure is
to directly observe the time-evolution of structure by e.g.
multiple redshift observations of galaxy power spectrum.
In fact, we have a strong degeneracy between the growth
of large scale structure and the redshift-dependence of
the linear bias. Thus, to measure fm by multiple red-
shift observations, we need to fix the bias for each red-
shift by using other observations, i.e., cross-correlation
between the clustering of galaxies and weak lensing (see,
e.g., [13]). After evaluating the actual growth rate, one
can compare the actual and effective growth rates to con-
strain the couplings between the CDM and scalar field.

Conclusion.

We have shown that the additional interaction me-
diated by the scalar field that operates only between
dark matter through conformal and disformal couplings

3 The model considered in Ref. [18] is described by two parame-
ters, the equation of state w and the (background) energy trans-
fer parameter ξ (δQ in our analysis is neglected in [18]). Once
the constraints on background dynamics from the observations
such as type Ia supernovae and CMB are taken into account,
only ξ characterizes both the actual growth rate fc/bg and the
deviation ∆fc/bg. Thus in such a model, it is enough to measure
the single-redshift RSDs, however, this does not hold in a general
setup.

changes the continuity and Euler equations for cosmo-
logical perturbations in a non-trivial manner and inves-
tigated its impact on RSDs measurements in galaxy sur-
vey. We found that the effects of such modifications
appear even at sub-horizon scales in the presence of φ
and X(= −gµν∂µφ∂νφ/2)-dependence of the conformal
and/or disformal couplings. The effective linear growth
rate, which is inferred from measurements of the pecu-
liar velocities of the distributed galaxies, no longer corre-
sponds to the logarithmic time derivative of the density
perturbation and is rather characterized by both the den-
sity perturbations and their derivatives for each species
in general situation. In other words, the information of
the coupling is encoded in the peculiar velocity fields and
the true value of the growth rate of large-scale structure
cannot necessarily be constrained by the single-redshift
RSDs measurements. It can be extracted by using mul-
tiple power spectra of the galaxy distribution at different
redshift. This fact will play a vital role of measuring the
linear growth rate fm by the RSDs measurement, and
it will provide us a rich information of dark matter and
dark energy.
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fer parameter ξ (δQ in our analysis is neglected in [18]). Once
the constraints on background dynamics from the observations
such as type Ia supernovae and CMB are taken into account,
only ξ characterizes both the actual growth rate fc/bg and the
deviation ∆fc/bg. Thus in such a model, it is enough to measure
the single-redshift RSDs, however, this does not hold in a general
setup.

changes the continuity and Euler equations for cosmo-
logical perturbations in a non-trivial manner and inves-
tigated its impact on RSDs measurements in galaxy sur-
vey. We found that the effects of such modifications
appear even at sub-horizon scales in the presence of φ
and X(= −gµν∂µφ∂νφ/2)-dependence of the conformal
and/or disformal couplings. The effective linear growth
rate, which is inferred from measurements of the pecu-
liar velocities of the distributed galaxies, no longer corre-
sponds to the logarithmic time derivative of the density
perturbation and is rather characterized by both the den-
sity perturbations and their derivatives for each species
in general situation. In other words, the information of
the coupling is encoded in the peculiar velocity fields and
the true value of the growth rate of large-scale structure
cannot necessarily be constrained by the single-redshift
RSDs measurements. It can be extracted by using mul-
tiple power spectra of the galaxy distribution at different
redshift. This fact will play a vital role of measuring the
linear growth rate fm by the RSDs measurement, and
it will provide us a rich information of dark matter and
dark energy.
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Note added.
While this paper was being completed, Ref. [19] ap-

peared, in which the redshift space distortions in the
context of interacting dark matter and vacuum energy
are discussed.

Kaiser formula

• Multiple-redshift RSD observations can separate the actual growth rate and 
DM-DE coupling

• Measured         is not the actual growth rate        and it contains information of 
DM-DE coupling 

f e↵
m fm

f e↵
m = fm+�fm

• Single-redshift RSD observations can not determine the actual growth rate 
and DM-DE coupling



Summary

Growth rate obtained from RSD  

         =  actual growth rate + DM-DE coupling effect



• DM-DE interaction modifies continuity and Euler equations in a 
cosmological setup. 

• Even in DM-DE direct coupling (not though conformal or disformal metric) 
we reach the same conclusion

• Multiple-redshift RSD measurements provide us information of both the 
actual growth rate and DM-DE coupling

Summary

Growth rate obtained from RSD  

         =  actual growth rate + DM-DE coupling effect


