ARE REDSHIFT-SPACE DISTORTIONS ACTUALLY A PROBE OF GROWTH OF STRUCTURE

> RAMPEI KIMURA TOKYO INSTITUTE OF TECHNOLOGY

> > COSPA 2017

BASED ON ARXIV : 1709.09371 Collaborators : Teruaki Suyama, Masahide Yamaguchi, Daisuke Yamauchi, Shuichiro Yokoyama

- Newtonian gauge $ds^2 = -[1 + 2\Phi(t, x)]dt^2 + a^2(t)[1 2\Psi(t, x)]dx^2$ •
- Basic equations (sub-horizon approximation)

- 0

$$\frac{k^2}{a^2}\Psi = \frac{k^2}{a^2}\Phi = -4\pi G\rho_{\rm m}\delta_{\rm m}$$
 (Poisson equation)
$$\dot{\delta}_{\rm m} + \frac{k^2}{a^2}v_{\rm m} = 0 \qquad \dot{v}_{\rm m} - \Phi = 0$$
 (continuity & Euler equation)

- Newtonian gauge $ds^2 = -[1 + 2\Phi(t, x)]dt^2 + a^2(t)[1 2\Psi(t, x)]dx^2$
- Basic equations (sub-horizon approximation)

1.2

$$\frac{k^2}{a^2}\Psi = \frac{k^2}{a^2}\Phi = -4\pi G\rho_{\rm m}\delta_{\rm m}$$
$$\dot{\delta}_{\rm m} + \frac{k^2}{a^2}v_{\rm m} = 0 \qquad \dot{v}_{\rm m} - \Phi = 0$$

(Poisson equation)

(continuity & Euler equation)

$$\dot{\delta}_{\rm m} + 2H\dot{\delta}_{\rm m} - 4\pi G\rho_{\rm m}\delta_{\rm m} = 0$$

(Evolution of δ_m)

- Newtonian gauge $ds^2 = -[1 + 2\Phi(t, \boldsymbol{x})]dt^2 + a^2(t)[1 2\Psi(t, \boldsymbol{x})]d\boldsymbol{x}^2$
- Basic equations (sub-horizon approximation)

$$\frac{k^2}{a^2}\Psi = \frac{k^2}{a^2}\Phi = -4\pi G\rho_{\rm m}\delta_{\rm m}$$
$$\dot{\delta}_{\rm m} + \frac{k^2}{a^2}v_{\rm m} = 0 \qquad \dot{v}_{\rm m} - \Phi = 0$$

(Poisson equation)

(continuity & Euler equation)

$$\left(\ddot{\delta}_{\rm m} + 2H\dot{\delta}_{\rm m} - 4\pi G\rho_{\rm m}\delta_{\rm m} = 0\right)$$

(Evolution of δ_m)

• Growth factor D_m

$$\delta_{\rm m}(t, \mathbf{k}) = D_{\rm m}(t) \,\delta_0(\mathbf{k})$$

 δ_0 : Initial density contrast

• Linear growth rate f_m

$$f_{\rm m}(t) \equiv \frac{\mathrm{d}\ln D_{\rm m}}{\mathrm{d}\ln a}$$

- Newtonian gauge $ds^2 = -[1 + 2\Phi(t, \boldsymbol{x})]dt^2 + a^2(t)[1 2\Psi(t, \boldsymbol{x})]d\boldsymbol{x}^2$
- Basic equations (sub-horizon approximation)

 k^2

$$\frac{\pi}{a^2}\Psi = \frac{\pi}{a^2}\Phi = -4\pi G\rho_{\rm m}\delta_{\rm m}$$
$$\dot{\delta}_{\rm m} + \frac{k^2}{a^2}v_{\rm m} = 0 \qquad \dot{v}_{\rm m} - \Phi = 0$$

(Poisson equation)

(continuity & Euler equation)

$$\left(\ddot{\delta}_{\rm m} + 2H\dot{\delta}_{\rm m} - 4\pi G\rho_{\rm m}\delta_{\rm m} = 0\right)$$

(Evolution of δ_m)

• Growth factor D_m

 k^2

$$\delta_{\rm m}(t,\mathbf{k}) = D_{\rm m}(t)\,\delta_0(\mathbf{k})$$

 δ_0 : Initial density contrast

• Linear growth rate f_m

$$f_{\rm m}(t) \equiv \frac{\mathrm{d}\ln D_{\rm m}}{\mathrm{d}\ln a}$$

$$v_{\rm m} = -\frac{a^2 H}{k^2} f_{\rm m} \delta_{\rm m}$$

Okumura et al. Publ. Astron. Soc. Japan (2015) 00(0), 1–23

Okumura et al. Publ. Astron. Soc. Japan (2015) 00(0), 1–23

Growth rate can directly measured by RSD

(bias can be fixed by cross-correlation of LSS & weak lensing)

• **GR** + scalar field (Dark energy) $S = \int d^4x \sqrt{-g} \left[\frac{M_{\rm Pl}^2}{2} R[g] + \mathcal{L}_{\phi}[g,\phi] \right] + S_{\rm b} + S_{\rm c}$

- **GR** + scalar field (Dark energy) $S = \int d^4x \sqrt{-g} \left[\frac{M_{\rm Pl}^2}{2} R[g] + \mathcal{L}_{\phi}[g,\phi] \right] + S_{\rm b} + S_{\rm c}$
- Matter = (standard) **baryon** + **non-minimally coupled cold dark matter**

$$S_{\rm b} = \int d^4 x \sqrt{-g} \mathcal{L}_{\rm b}[g_{\mu\nu}, \psi_{\rm b}]$$

$$S_{\rm c} = \int d^4 x \sqrt{-\overline{g}} \mathcal{L}_{\rm c}[\overline{g}_{\mu\nu}, \psi_{\rm c}] \qquad \overline{g}_{\mu\nu} = A(\phi, X)g_{\mu\nu} + B(\phi, X)\partial_{\mu}\phi\partial_{\nu}\phi$$

(conformal & disformal coupling)

Baryon : sensitive to solar-system experiments \rightarrow minimal couplingCDM : insensitive to solar system experiments \rightarrow non-minimal coupling

- **GR** + scalar field (Dark energy) $S = \int d^4x \sqrt{-g} \left[\frac{M_{\rm Pl}^2}{2} R[g] + \mathcal{L}_{\phi}[g,\phi] \right] + S_{\rm b} + S_{\rm c}$
- Matter = (standard) **baryon** + **non-minimally coupled cold dark matter**

$$S_{\rm b} = \int d^4 x \sqrt{-g} \mathcal{L}_{\rm b}[g_{\mu\nu}, \psi_{\rm b}]$$

$$S_{\rm c} = \int d^4 x \sqrt{-\bar{g}} \mathcal{L}_{\rm c}[\bar{g}_{\mu\nu}, \psi_{\rm c}] \qquad \bar{g}_{\mu\nu} = A(\phi, X)g_{\mu\nu} + B(\phi, X)\partial_{\mu}\phi\partial_{\nu}\phi$$

(conformal & disformal coupling)

Baryon : **sensitive** to solar-system experiments → **minimal** coupling CDM : **insensitive** to solar system experiments → **non-minimal** coupling

Energy-momentum conservation

$$\nabla^{\mu} T^{(b)}_{\mu\nu} = 0 \qquad \nabla^{\mu} \left(T^{(c)}_{\mu\nu} + T^{(\phi)}_{\mu\nu} \right) = 0$$

- **GR** + scalar field (Dark energy) $S = \int d^4x \sqrt{-g} \left[\frac{M_{\rm Pl}^2}{2} R[g] + \mathcal{L}_{\phi}[g,\phi] \right] + S_{\rm b} + S_{\rm c}$
- Matter = (standard) **baryon** + **non-minimally coupled cold dark matter**

$$S_{\rm b} = \int d^4 x \sqrt{-g} \mathcal{L}_{\rm b}[g_{\mu\nu}, \psi_{\rm b}]$$

$$S_{\rm c} = \int d^4 x \sqrt{-\overline{g}} \mathcal{L}_{\rm c}[\overline{g}_{\mu\nu}, \psi_{\rm c}] \qquad \overline{g}_{\mu\nu} = A(\phi, X)g_{\mu\nu} + B(\phi, X)\partial_{\mu}\phi\partial_{\nu}\phi$$

(conformal & disformal coupling)

Baryon : sensitive to solar-system experiments→minimal couplingCDM : insensitive to solar system experiments→non-minimal coupling

Energy-momentum conservation

$$\nabla^{\mu} T^{(b)}_{\mu\nu} = 0 \qquad \qquad \nabla^{\mu} \left(T^{(c)}_{\mu\nu} + T^{(\phi)}_{\mu\nu} \right) = 0$$

Energy transfer between dark energy and CDM

BASIC EQUATIONS

Basic equations

$$G_{\mu\nu} + \Lambda g_{\mu\nu} = \frac{1}{M_{\rm Pl}^2} \left(T^{\rm (m)}_{\mu\nu} + T^{(\phi)}_{\mu\nu} \right)$$
$$\nabla^{\mu} T^{\rm (b)}_{\mu\nu} = 0$$
$$\nabla^{\mu} T^{\rm (c)}_{\mu\nu} = -Q \partial_{\nu} \phi$$

 $\Box \phi - V_{\phi} = Q$

EM tensor for the total matter $T^{(m)}_{\mu\nu} := T^{(b)}_{\mu\nu} + T^{(c)}_{\mu\nu}$

(Einstein equation)

(Conservation equation for baryon)

(Conservation equation for DM & DE)

(scalar field equation)

BASIC EQUATIONS

Basic equations

$$G_{\mu\nu} + \Lambda g_{\mu\nu} = \frac{1}{M_{\rm Pl}^2} \left(T^{\rm (m)}_{\mu\nu} + T^{(\phi)}_{\mu\nu} \right)$$
$$\nabla^{\mu} T^{\rm (b)}_{\mu\nu} = 0$$
$$\nabla^{\mu} T^{\rm (c)}_{\mu\nu} = -Q \partial_{\nu} \phi$$
$$\Box \phi - V_{\phi} = Q$$

EM tensor for the total matter $T^{(m)}_{\mu\nu} := T^{(b)}_{\mu\nu} + T^{(c)}_{\mu\nu}$

(Einstein equation)

(Conservation equation for baryon)

(Conservation equation for DM & DE)

(scalar field equation)

• *Q* roughly represents the magnitude of the coupling between DM & DE

$$Q = -\frac{1}{\sqrt{-g}} \frac{\delta(\sqrt{-\bar{g}}\mathcal{L}_{c})}{\delta\phi} = \nabla_{\mu}W^{\mu} - Z$$

$$Z = \frac{1}{2A} \left[\left\{ A_{\phi} + \frac{A_{X}X(A_{\phi} - 2B_{\phi}X)}{A - A_{X}X + 2B_{X}X^{2}} \right\} T_{(c)} + \left\{ B_{\phi} + \frac{B_{X}X(A_{\phi} - 2B_{\phi}X)}{A - A_{X}X + 2B_{X}X^{2}} \right\} T_{(c)}^{\mu\nu} \partial_{\mu}\phi \partial_{\nu}\phi \right]$$

$$W^{\mu} = \frac{1}{2A} \left[2B T^{\mu\nu}_{(c)} \partial_{\nu}\phi - \frac{A - 2BX}{A - A_{X}X + 2B_{X}X^{2}} \times \left(A_{X}T_{(c)} + B_{X}T^{\alpha\beta}_{(c)}\partial_{\alpha}\phi\partial_{\beta}\phi \right) \partial^{\mu}\phi \right],$$

MODIFIED KAISER FORMULA

(sub-horizon + quasi-static approximation)

• Einstein equations and baryon's equations are the same

MODIFIED KAISER FORMULA

(sub-horizon + quasi-static approximation)

- Einstein equations and baryon's equations are the same
- Continuity & Euler equations for CDM are modified !!

$$\dot{\delta}_{\rm c} + \frac{k^2}{a^2} v_{\rm c} = R_0 \left(\dot{\delta}_{\rm c} - \frac{Q_0}{\dot{\phi}} \delta_{\rm c} \right)$$

$$\dot{v}_c - \Phi = \Gamma_1 \, v_c + \Gamma_2 \, \dot{\delta}_c + \Gamma_3 \, \delta_c$$

*v*_c depends on time-derivative of density contrast and **density contrast**

 R_0, Q_0, Γ_i : depends on DM-DE coupling parameters

MODIFIED KAISER FORMULA

(sub-horizon + quasi-static approximation)

- Einstein equations and baryon's equations are the same
- Continuity & Euler equations for CDM are modified !!

$$\dot{\delta}_{\rm c} + \frac{k^2}{a^2} v_{\rm c} = R_0 \left(\dot{\delta}_{\rm c} - \frac{Q_0}{\dot{\phi}} \delta_{\rm c} \right)$$

$$\dot{v}_c - \Phi = \Gamma_1 v_c + \Gamma_2 \delta_c + \Gamma_3 \delta_c$$

*v*_c depends on time-derivative of density contrast and **density contrast**

 R_0, Q_0, Γ_i : depends on DM-DE coupling parameters

• Evolution of density contrast of CDM

$$\ddot{\delta}_{\rm c} + 2H_{\rm eff} \, \dot{\delta}_{\rm c} - 4\pi G_{\rm eff} \, \rho_{\rm m} \delta_{\rm m} = 0$$

Growth rate also deviates from the standard cosmology

• Total matter = baryon + CDM ($T_{\mu\nu}^{(m)} := T_{\mu\nu}^{(b)} + T_{\mu\nu}^{(c)}$)

$$\delta_{\rm m} = \omega_{\rm c} \delta_{\rm c} + \omega_{\rm b} \delta_{\rm b} \qquad v_{\rm m} = \omega_{\rm c} v_{\rm c} + \omega_{\rm b} v_{\rm b} \qquad \omega_{\rm I} = \rho_{\rm I} / \rho_{\rm m}$$

• Total matter = baryon + CDM ($T_{\mu\nu}^{(m)} := T_{\mu\nu}^{(b)} + T_{\mu\nu}^{(c)}$)

$$\delta_{\rm m} = \omega_{\rm c} \delta_{\rm c} + \omega_{\rm b} \delta_{\rm b} \qquad v_{\rm m} = \omega_{\rm c} v_{\rm c} + \omega_{\rm b} v_{\rm b} \qquad \omega_{\rm I} = \rho_{\rm I} / \rho_{\rm m}$$

• Velocity of the total matter is modified due to modification of CDM equation

$$v_{\rm m}(t,\mathbf{k}) = -\frac{a^2 H}{k^2} f_{\rm m}^{\rm eff}(t) \delta_{\rm m}(t,\mathbf{k})$$

• Total matter = baryon + CDM ($T_{\mu\nu}^{(m)} := T_{\mu\nu}^{(b)} + T_{\mu\nu}^{(c)}$)

$$\delta_{\rm m} = \omega_{\rm c} \delta_{\rm c} + \omega_{\rm b} \delta_{\rm b} \qquad v_{\rm m} = \omega_{\rm c} v_{\rm c} + \omega_{\rm b} v_{\rm b} \qquad \omega_{\rm I} = \rho_{\rm I} / \rho_{\rm m}$$

• Velocity of the total matter is modified due to modification of CDM equation

$$v_{\rm m}(t,\mathbf{k}) = -\frac{a^2 H}{k^2} f_{\rm m}^{\rm eff}(t) \delta_{\rm m}(t,\mathbf{k})$$

Modified Kaiser formula $P_{g,s}(\mathbf{k};t) = b_g^2 \left(1 + \beta_{\text{eff}}(t) \mu^2\right)^2 P_{\text{m}}(k;t) \qquad \beta_{\text{eff}} \equiv \frac{f_{\text{m}}^{\text{eff}}}{b_g}$

$$\begin{array}{|c|c|} \hline & \mbox{Modified Kaiser formula} \\ & P_{{\rm g},s}({\bf k};t) = \, b_{{\rm g}}^2 \left(1 + \beta_{\rm eff}(t) \, \mu^2\right)^2 P_{\rm m}(k;t) \\ & f_{\rm m}^{\rm eff} = f_{\rm m} + \Delta f_{\rm m} \\ & \beta_{\rm eff} \equiv \frac{f_{\rm m}^{\rm eff}}{b_{\rm g}} \end{array} \end{array}$$

 $D_{\rm m} = D_{\rm c} = D_{\rm b}$ $f_{\rm m}^{\rm eff} = f_{\rm m}$

$$\begin{array}{l} \mbox{Modified Kaiser formula} \\ P_{\mathrm{g},s}(\mathbf{k};t) = b_{\mathrm{g}}^{2} \left(1 + \beta_{\mathrm{eff}}(t) \, \mu^{2}\right)^{2} P_{\mathrm{m}}(k;t) \\ f_{\mathrm{m}}^{\mathrm{eff}} = f_{\mathrm{m}} + \Delta f_{\mathrm{m}} \\ \end{array} \qquad \beta_{\mathrm{eff}} \equiv \frac{f_{\mathrm{m}}^{\mathrm{eff}}}{b_{\mathrm{g}}} \end{array}$$

 $D_{\rm m} = D_{\rm c} = D_{\rm b}$ $f_{\rm m}^{\rm eff} = f_{\rm m}$

Kaiser formula

$$\begin{array}{l} \mbox{Modified Kaiser formula} \\ P_{\mathrm{g},s}(\mathbf{k};t) = b_{\mathrm{g}}^{2} \left(1 + \beta_{\mathrm{eff}}(t) \, \mu^{2}\right)^{2} P_{\mathrm{m}}(k;t) \\ f_{\mathrm{m}}^{\mathrm{eff}} = f_{\mathrm{m}} + \Delta f_{\mathrm{m}} \\ \end{array} \qquad \beta_{\mathrm{eff}} \equiv \frac{f_{\mathrm{m}}^{\mathrm{eff}}}{b_{\mathrm{g}}} \end{array}$$

 $D_{\rm m} = D_{\rm c} = D_{\rm b}$ $f_{\rm m}^{\rm eff} = f_{\rm m}$

Kaiser formula

Modified Kaiser formula

$$P_{g,s}(\mathbf{k};t) = b_g^2 \left(1 + \beta_{eff}(t) \mu^2\right)^2 P_m(k;t)$$

$$f_m^{eff} = f_m + \Delta f_m \qquad \beta_{eff} \equiv \frac{f_m^{eff}}{b_g}$$

 $D_{\rm m} = D_{\rm c} = D_{\rm b}$ $f_{\rm m}^{\rm eff} = f_{\rm m}$

Kaiser formula

Non-minimally coupled CDM

• RSD measures the effective growth rate $f_{\rm m}^{\rm eff}$

$$\begin{array}{l} \mbox{Modified Kaiser formula} \\ P_{\mathrm{g},s}(\mathbf{k};t) = b_{\mathrm{g}}^{2} \left(1 + \beta_{\mathrm{eff}}(t) \, \mu^{2}\right)^{2} P_{\mathrm{m}}(k;t) \\ f_{\mathrm{m}}^{\mathrm{eff}} = f_{\mathrm{m}} + \Delta f_{\mathrm{m}} \\ \end{array} \qquad \beta_{\mathrm{eff}} \equiv \frac{f_{\mathrm{m}}^{\mathrm{eff}}}{b_{\mathrm{g}}} \end{array}$$

 $D_{\rm m} = D_{\rm c} = D_{\rm b}$ $f_{\rm m}^{\rm eff} = f_{\rm m}$

Kaiser formula

- RSD measures the effective growth rate $f_{
 m m}^{
 m eff}$
- Measured $f_{\rm m}^{\rm eff}$ is not the actual growth rate $f_{\rm m}$ and it contains information of **DM-DE coupling**

Modified Kaiser formula

$$P_{g,s}(\mathbf{k};t) = b_g^2 \left(1 + \beta_{eff}(t) \mu^2\right)^2 P_m(k;t)$$

$$f_m^{eff} = f_m + \Delta f_m \qquad \beta_{eff} \equiv \frac{f_m^{eff}}{b_g}$$

 $D_{\rm m} = D_{\rm c} = D_{\rm b}$ $f_{\rm m}^{\rm eff} = f_{\rm m}$

- RSD measures the effective growth rate $f_{
 m m}^{
 m eff}$
- Measured $f_{\rm m}^{\rm eff}$ is not the actual growth rate $f_{\rm m}$ and it contains information of **DM-DE coupling**
- **Single-redshift RSD observations** can not determine the actual growth rate and DM-DE coupling

$$\begin{array}{c} \mbox{Modified Kaiser formula} \\ P_{{\rm g},s}({\bf k};t) = \ b_{{\rm g}}^2 \left(1 + \mbox{$\beta_{\rm eff}(t)$} \ \mu^2\right)^2 P_{{\rm m}}(k;t) \\ f_{{\rm m}}^{{\rm eff}} = \ f_{{\rm m}} + \Delta f_{{\rm m}} \\ \end{array} \qquad \beta_{{\rm eff}} \equiv \frac{f_{{\rm m}}^{{\rm eff}}}{b_{{\rm g}}} \end{array}$$

 $D_{\rm m} = D_{\rm c} = D_{\rm b}$ $f_{\rm m}^{\rm eff} = f_{\rm m}$

- RSD measures the effective growth rate $f_{
 m m}^{
 m eff}$
- Measured $f_{\rm m}^{\rm eff}$ is not the actual growth rate $f_{\rm m}$ and it contains information of **DM-DE coupling**
- **Single-redshift RSD observations** can not determine the actual growth rate and DM-DE coupling
- **Multiple-redshift RSD observations** can separate the actual growth rate and DM-DE coupling

Growth rate obtained from RSD

= actual growth rate + **DM-DE coupling effect**

SUMMARY

Growth rate obtained from RSD

= actual growth rate + **DM-DE coupling effect**

- DM-DE interaction modifies continuity and Euler equations in a cosmological setup.
- Even in DM-DE **direct coupling** (not though conformal or disformal metric) we reach the same conclusion
- Multiple-redshift RSD measurements provide us information of both the actual growth rate and DM-DE coupling