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Scalars in the Early Universe
Impact of Mass-Generating Phase Transitions

• Additional scalar fields commonly appear in extensions of the SM, and tend
to play an important role in early-universe cosmology.

• These fields are often light due to shift symmetries at
high scales, but are broken by some dynamics that
enters in the effective lower-temperature theory.
i.e., they undergo mass-generating phase transitions.

example: QCD Axion
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Scalars in the Early Universe
Impact of Mass-Generating Phase Transitions

• All of this can be important for model building: the energy density ρ carried
by these scalar(s) at late times (used to compute abundances, overclosure
bounds, etc.) is generally sensitive to the timescale ∆G over which such
a phase transition unfolds.

• With multiple fields {ϕλ}, such transitions can generate off-diagonal
elements in the mass matrix M2, and thus mixing is also generated
amongst the fields in a dynamical, time-dependent way.

Veff(ϕ0, ϕ1, . . .) ⊃ 1
2

∑
k,ℓ

ϕk

mass matrix

M2
kℓ(t)ϕℓ

M2(t) =


M2

0 0 · · · 0
0 M2

1 · · · 0
...

...
. . .

...
0 0 · · · M2

N−1


constant masses M2

i

+


m2

00 m2
01 · · · m2

0,N−1
m2

01 m2
11 · · · m2

1,N−1
...

...
. . .

...
m2

0,N−1 m2
1,N−1 · · · m2

N−1,N−1


m2

ij(t) generated during phase transition
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A Two-Field Toy Model
A Very Brief Review

• This has been found to have a surprising influence, even in the context of a
simple but generic two-component toy model [arXiv:1509.00470]:

M2(t) =
[
0 0
0 M2

]
constant term

+
[
m2

00 m2
01

m2
01 m2

11

]
generated terms

h2(t)
time-dependence
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This is under the minimal assumption of only two components.
⇒ what happens in models with larger collections of fields,

such as those furnished by models with extra dimensions?



Mass Generation in a KK Tower
The Framework

• Consider a spacetime geometry M × S1/Z2, i.e. an extra
dimension compactified on a line segment, with a bulk
scalar Φ(xµ, x5):

S =
∫
d4xdx5

[
1
2
∂M Φ∗∂M Φ

Φ shift symmetry
forbids bulk mass

+δ(x5)Lbrane(ψi,Φ)
]

• The 4D mass matrix then mixes the fields:

M2 = m2(t)


1

√
2

√
2 · · ·

√
2 2 + M2

c
m2(t) 2 · · ·

√
2 2 2 + 4M2

c
m2(t) · · ·

...
...

...
. . .



• m ≫ Mc indicates highly mixed ensemble
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interactions with fields on brane can
lead to an effective 4D mass m(t):

1
V
Lbrane(Φ) = −

1
2
m2(t) |Φ|2 + . . .

and we parameterize our ignorance:

t

m
∼δG

m(t)

tG

V≡2πR

bulk
Φ(xµ, x5)

SM
bra

ne

{ψi(x
µ)}

Mc ≡ 1/R ≥ 4.49 · 10−12GeV



Evolving the System
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In a flat FRW cosmology the KK modes {ϕk} evolve as

ϕ̈k + 3H(t)ϕ̇k +
∞∑

ℓ=0

M2
kℓ(t)ϕℓ = 0 ,

which in general cannot be solved analytically due to
the time-dependence in M2

kℓ near the phase transition.

⇒ perform numerics on truncated tower of N modes,
and recover features through N → ∞ limiting behavior.



Survey of Four-Dimensional (N = 1) Limit
Standard Approximations
• Two approximations are commonly use in the literature to compute late-time

abundances in single-field models that undergo such phase transitions:
◦ abrupt approximation ρ4D (where δG → 0)
◦ adiabatic approximation ρ4D|ad (where ṁ/m2 ≪ 1)

[exact ρ]/[abrupt solutions]
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• Even for N = 1, there are regions of parameter space that are inaccesible
to the standard approximations, particularly in the m ≫ 1/tG regime.
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• Even for N = 1, there are regions of parameter space that are inaccesible
to the standard approximations, particularly in the m ≫ 1/tG regime.
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can use numerical results to extract
accurate analytical approximations



Dynamics of the N > 1 Tower
A Qualitative Description
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Approaching Asymptotia: N → ∞
Behavior of the Solutions

• It is instructive to examine the N → ∞ asymptotic behavior of various
late-time quantities while varying δG (and taking m = 100Mc):
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[exact ρ]/[abrupt approx.] [exact ρ]/[4D limit]

← different truncations

the phase transition suppresses modes that exceed δGtG ≳
√

2π/λ,
i.e. it accelerates the N →∞ convergence — often leaving only
a few modes that appreciably contribute to the total ρ.



The KK Tower Limit: Extracting N → ∞ Limit
Suppressions, Tower Fractions, and Distributions
• Equipped with a method to efficiently compute asymptotia for large N , we

now have the ability to compute results effectively for the full KK tower.
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[exact ρ]/[abrupt approx.] [exact ρ]/[4D limit] [tower fraction]

η ≡ 1−maxλ
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fraction of abundance
in subdominant modes

again can extract general analytical
approximations in different regions
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η ≡ 1−maxλ

{
ρλ
ρ

}
fraction of abundance
in subdominant modes

again can extract general analytical
approximations in different regions



The KK Tower Limit: Extracting N → ∞ Limit
Suppressions, Tower Fractions, and Distributions
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Example: Axion in the Bulk
• At this point we can drop the generality of Φ and apply our machinery to a

specific model: for example a bulk axion-like particle (ALP).
• Our {tG,mX ,Mc} parameter space is mapped onto {ΛG, f̂X ,Mc}

1 10 102

ΛG [GeV]

109

1010

1011

1012

1013

f̂ X
[G

eV
]

δG = 0.0

m
X
=
M
c

m
X t
G=

1

M
c t
G

=
1

0.
99

0.
90.

70.
30.

1

1 10 102

ΛG [GeV]

δG = 0.1

m
X
=
M
c

m
X t
G=

1

M
c t
G

=
1

0
.1

0
.4

0
.6

0
.8

0
.8

8

1 10 102

ΛG [GeV]

δG = 0.3

m
X
=
M
c

m
X t
G=

1

M
c t
G

=
1

0
.1

0
.4

0
.6

0
.7

10−11 10−14 10−17

tG [s]
10−11 10−14 10−17

tG [s]
10−11 10−14 10−17

tG [s]

0.0

0.2

0.4

0.6

0.8

1.0

η

Jeff Kost KK Towers in the Early Unvierse
12/14

associated confinement scale effective 4D
decay constant

tG =
√

45g∗(TRH)
2π2

T 2
RHMp

g∗(ΛG)Λ4
G

m2
X = C2g2

32π2
Λ4

G

f̂2
X

[tower
fraction]

maximum tower fraction
in 1 ≲MctG ≲ mX tG

transition suppresses heavier modes,
confining maximum
to 1 ∼MctG ≲ mX tG
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[exact ρ]/[abrupt approx.] [exact ρ]/[4D limit]

enhancements and large
suppressions relative
to abrupt approximation

presence of extra
dimension produces
significant additional
suppression of ρ for
m ≳Mc ∪ mtG ≳ 1



The Take-Away Message
• Models of non-minimal scalar sectors that undergo mass-generating phase

transitions in general are very sensitive to phase transitions details.
◦ both the total energy density and its distribution across individual modes in

the ensemble show this — both in a simple but generic two-field model, and in
model with a bulk scalar.

◦ we derived a variety of asymptotic scaling behaviors and analytic expressions
for the energy densities of the tower as functions of relevant model parameters

◦ applied the general machinery of our framework to the example of a bulk
axion, allowing us to determine where the standard approximations succeed/fail
— and may suggest the weakening of overclosure bounds in certain regions

• There are many possible future directions:
◦ we assumed a single flat extra dimension, but what phenomena arise with a

warped geometry and/or multiple extra spatial dimensions?
◦ we operated under assumption that the fields ρϕ ≪ ρcrit during the

mass-generation epoch, but what is the effect of the backreaction on H away
from this regime [i.e., where scalars play role during inflation/(p)reheating]?

THANKS FOR YOUR ATTENTION!
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