KK Towers in the Early Universe:

Phase Transitions, Relic Abundances,
and Applications to Axion Cosmology

Jeff Kost
(IBS-CTPU)

P collaborators on this work:
[arXiv:1612.08950] Keith Dienes (Arizona)

[arXiv:1509.00470] Byooks Thomas (Lafayette)

CosPA 2017

Thursday, December 14t 2017

KK Towers in the Early Unvierse



Scalars in the Early Universe

Impact of Mass-Generating Phase Transitions

e Additional scalar fields commonly appear in extensions of the SM, and tend
to play an important role in early-universe cosmology.
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Scalars in the Early Universe

Impact of Mass-Generating Phase Transitions

e All of this can be important for model building: the energy density p carried
by these scalar(s) at late times (used to compute abundances, overclosure
bounds, etc.) is generally sensitive to the timescale A over which such
a phase transition unfolds.

e With multiple fields {¢}, such transitions can generate off-diagonal
elements in the mass matrix M2, and thus mixing is also generated
amongst the fields in a dynamical, time-dependent way.
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A Two-Field Toy Model

A Very Brief Review

e This has been found to have a surprising influence, even in the context of a
simple but generic two-component toy model [arXiv:1509.00470]:
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Mass Generation in a KK Tower

The Framework

e Consider a spacetime geometry M x S'/Zy, i.e. an extra
dimension compactified on a line segment, with a bulk
scalar ®(z#, 2°):

S /d4{17d$ M(I> 8M<I> +6( )»Cbranc(wivq))}

Lo shlft symmetry

forbids bulk mass interactions with fields on brane can
) lead to an effective 4D mass m(t):
e The 4D mass matrix then mixes the fields: 1 1 )
1 V2 V2 P Lbrane(®) = —5m*(1) 2]
2

V2 24 mM(t 2 and we parameterize our ignorance:
2 _ 2 ) )
= 4M? 4 ~dg

M. =1/R > 4.49 - 10712GeV

e m > M., indicates highly mixed ensemble
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Evolving the System

In a flat FRW cosmology the KK modes {¢y} evolve as

oo
G+ BH (o + Y Miy(t)e = 0,
£=0
which in general cannot be solved analytically due to
the time-dependence in M3, near the phase transition.

= perform numerics on truncated tower of N modes,
and recover features through N — oo limiting behavior.
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Survey of Four-Dimensional (N = 1) Limit

Standard Approximations
e Two approximations are commonly use in the literature to compute late-time
abundances in single-field models that undergo such phase transitions:

o abrupt approximation p,, (where d¢ — 0)
o adiabatic approximation pyp|,, (where 1n/m? < 1)

[exact p]/[abrupt solutions] [exact p]/[adiabatic solutions]
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e Even for N = 1, there are regions of parameter space that are inaccesible
to the standard approximations, particularly in the m > 1/tg regime.
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D\/namlcs Of the N > 1 Tower suppresses/enhances modes by

A Qualitative Description different amounts according to
Frefmmm - 1 details of the phase transition
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Approaching Asymptotia: N — oo

Behavior of the Solutions

e [t is instructive to examine the N — oo asymptotic behavior of various
late-time quantities while varying d¢ (and taking ™ = 100M,.):
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the phase transition suppresses modes that exceed dgta = V27/ A,
i.e. it accelerates the N — oo convergence — often leaving only
a few modes that appreciably contribute to the total p.
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The KK Tower Limit: Extracting N — oo Limit

Suppressions, Tower Fractions, and Distributions
e Equipped with a method to efficiently compute asymptotia for large N, we
now have the ability to compute results effectively for the full KK tower.
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The KK Tower Limit: Extracting N — oo Limit

Suppressions, Tower Fractions, and Distributions

tower fraction n
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The KK Tower Limit: Extracting N — oo Limit

Suppressions, Tower Fractions, and Distributions
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Example: Axion in the Bulk

o At this point we can drop the generality of ® and apply our machinery to a
specific model: for example a bulk axion-like particle (ALP).

e Our {tg,mx, M.} parameter space is mapped onto {A¢, ,fx,m}
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Example: Axion in the Bulk
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The Take-Away Message
e Models of non-minimal scalar sectors that undergo mass-generating phase
transitions in general are very sensitive to phase transitions details.

o both the total energy density and its distribution across individual modes in
the ensemble show this — both in a simple but generic two-field model, and in
model with a bulk scalar.

o we derived a variety of asymptotic scaling behaviors and analytic expressions
for the energy densities of the tower as functions of relevant model parameters

o applied the general machinery of our framework to the example of a bulk
axion, allowing us to determine where the standard approximations succeed /fail
— and may suggest the weakening of overclosure bounds in certain regions

e There are many possible future directions:

o we assumed a single flat extra dimension, but what phenomena arise with a
warped geometry and/or multiple extra spatial dimensions?

o we operated under assumption that the fields py < pcrit during the
mass-generation epoch, but what is the effect of the backreaction on H away
from this regime [i.e., where scalars play role during inflation/(p)reheating]?
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