THEORETICAL PHYSICS

Nonminimally Coupled Scalar Field in R^{2}-inflation

Shi Pi (YITP)
Based on Collaboration with
Yingli Zhang, Qing-guo Huang, and Misao Sasaki
(in preparation)

Contents

- Introduction: Motivations
- Set up and calculation
- Results and applications
- Conclusion

- Typical potential for 'inflation + massive field', where oscillatetions will be generated. (Borrowed from Chen, Namjoo \& Wang 2015, see also Yi Wang's talk)

- Chen, Namjoo \& Wang 2015:

$$
\sim\left(1-e^{-\phi^{2} / M^{2}}\right)
$$

- Our model: (see also Minxi He’s talk; Mori, Kohri \& White 2017)

$$
\sim\left(1-e^{-\phi / M_{\mathrm{Pl}}}\right)^{2}
$$

Motivation

- A natural way to realize it is just R^{2} gravity plus inflaton.
- R^{2} gravity itself can generate inflation. (Starobinsky 1980)
- Also, it is the best-fit inflation model. (Planck 2015)
- It is equivalent to study the scalar field(s) in Starobinsky model.

Motivation

- A natural way to realize it is just R^{2} gravity plus inflaton.
- R^{2} gravity itself can generate inflation. (Starobinsky 1980)
- Also, it is the best-fit inflation model. (Planck 2015)
- It is equivalent to study the scalar field(s) in Starobinsky model.

Contents

- Introduction: Motivations
- Set up and calculation
- Results and applications
- Conclusion

Setup

- We propose the Lagrangian as the Starobinsky R^{2} gravity plus a scalar field χ, nonminimally coupled to gravity

$$
S_{J}=\int d^{4} x \sqrt{-g}\left\{\frac{M_{\mathrm{Pl}}^{2}}{2}\left(R+\frac{R^{2}}{6 M^{2}}\right)-\frac{1}{2} g^{\mu \nu} \partial_{\mu} \chi \partial_{\nu} \chi-V(\chi)-\frac{1}{2} \xi R \chi^{2}\right\} .
$$

- Recall Minxi He's talk if χ is explained as Higgs boson.
- $\mathrm{V}(\chi)$ is potential for χ, which we pick for the small-field form: $\mathrm{V}(\chi)=\mathrm{V}_{0}-(1 / 2) \mathrm{m}^{2} \chi^{2}+\ldots$ (Recall Yipeng Wu's talk for a similar potential from SSB)
- ξ-term is the non-minimally coupled term to solve the initial condition problem. Another version of SSB in χ direction.

Setup

- It has been proved that the action with R^{2} is equivalent to Einstein-Hilbert action plus one scalar field (scalaron). (Whitt 1984, Maeda 1988)
- After transferred to Einstein frame, our model becomes Hilbert Einstein action with two scalar fields: scalaron $\phi+$ light field χ, with nontrivial metric in field space (Mizuno's talk)

$$
\begin{aligned}
S_{E}=\int d^{4} x \sqrt{-\tilde{g}} & \cdot\left\{\frac{M_{\mathrm{Pl}}^{2}}{2} \tilde{R}-\frac{1}{2} \tilde{g}^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi-\frac{1}{2} e^{-\sqrt{\frac{2}{3}} \frac{\phi}{M_{\mathrm{Pl}}}} g^{\mu \nu} \partial_{\mu} \chi \partial_{\nu} \chi\right. \\
& -\frac{3}{4} M^{2} M_{\mathrm{Pl}}^{2}\left(1-e^{-\sqrt{\frac{2}{3}} \frac{\phi}{M_{\mathrm{Pl}}}}+e^{-\sqrt{\frac{2}{3}} \frac{\phi}{M_{\mathrm{Pl}}}} \xi \frac{\chi^{2}}{M_{\mathrm{Pl}}^{2}}\right)^{2}-e^{\left.-2 \sqrt{\frac{2}{3}} \frac{\phi}{M_{\mathrm{Pl}}} V(\chi)\right\}} .
\end{aligned}
$$

EoM

- The equations of motion:

$$
\begin{array}{r}
3 M_{\mathrm{Pl}}^{2} H^{2}=\frac{1}{2} \dot{\phi}^{2}+F^{-1} \frac{1}{2} \dot{\chi}^{2}+\frac{3}{4} M^{2} M_{\mathrm{Pl}}^{2}\left[1-F^{-1}\left(1-\xi \frac{\chi^{2}}{M_{\mathrm{Pl}}^{2}}\right)\right]^{2}+F^{-2} V(\chi), \\
\ddot{\phi}+3 H \dot{\phi}+\sqrt{\frac{3}{2}} M^{2} M_{\mathrm{Pl}} F^{-1}\left\{1-\xi \frac{\chi^{2}}{M_{\mathrm{Pl}}^{2}}+\frac{\dot{\chi}^{2}}{3 M^{2} M_{\mathrm{Pl}}^{2}}-F^{-1}\left[\left(1-\xi \frac{\chi^{2}}{M_{\mathrm{Pl}}^{2}}\right)^{2}+\frac{4 V}{3 M^{2} M_{\mathrm{Pl}}^{2}}\right]\right\}=0, \\
\ddot{\chi}+\left(3 H-\sqrt{\frac{2}{3}} \frac{\dot{\phi}}{M_{\mathrm{Pl}}}\right) \dot{\chi}+3 M^{2}\left[1-F^{-1}\left(1-\xi \frac{\chi^{2}}{M_{\mathrm{Pl}}^{2}}\right)\right] \xi \chi+F^{-1} V^{\prime}(\chi)=0,
\end{array}
$$

- with $F=\exp \left(\sqrt{\frac{2}{3}} \frac{\phi}{M_{\mathrm{Pl}}}\right)$ and $V(\chi)=V_{0}-\frac{1}{2} m^{2} \chi^{2}+\cdots$,

Slow-roll EoM

- The slow-roll version of equations of motion:

$$
\begin{array}{r}
3 H \dot{\phi}=-\sqrt{\frac{3}{2}} e^{-\sqrt{\frac{2}{3}} \frac{\phi}{M_{\mathrm{PI}}}}\left(1-e^{-\sqrt{\frac{2}{3}} \frac{\phi}{M_{\mathrm{Pl}}}}\left(1+\frac{4}{\mu^{2}}\right)\right) M^{2} M_{\mathrm{Pl}}, \\
\left(3 H-\sqrt{\frac{2}{3}} \frac{\dot{\phi}}{M_{\mathrm{Pl}}}\right) \dot{\chi}+3 M^{2} e^{-\sqrt{\frac{2}{3}} \frac{\phi}{M_{\mathrm{Pl}}}}\left[\xi\left(e^{\sqrt{\frac{2}{3}} \frac{\phi}{M_{\mathrm{Pl}}}}-1\right)-\frac{m^{2}}{3 M^{2}}\right] \chi=0 .
\end{array}
$$

- We have defined an important mass parameter

$$
\mu^{2} \equiv \frac{3 M^{2} M_{\mathrm{Pl}}^{2}}{V_{0}}
$$

- which is the mass M measured by H at $\phi=0$.
- The relations in ϕ go back to Starobinsky model for $\mu \rightarrow \infty$

End of Starobinsky inflation

- We have the "later end of inflation", for V_{0} can become important at the end of the first stage of inflation.

Some Conditions

- Late end of first stage: $\quad F_{*}=1.18+\frac{1.92}{\mu} \quad$ (Starobinsky model $F_{*} \approx 2.6$)
- If μ is not too large, the transition between two stages does not violate the inflation. (see Polarski \& Starobinsky 1992)
- We will focus on this range, for $2<\mu<8.95$.
- To solve the initial conditions, we require ξ to be positive and small: $\xi<m^{2 /}$ M^{2}.
- If ξ is too small, the initial condition for the small field inflation for X will again arise. So in our model we require ξ is not too smaller than $\mathrm{O}\left(m^{2} / M^{2}\right)$.
- In the first stage, ϕ dominates inflation, and the curvature perturbation can be calculated by δN formalism. (Sasaki \& Stewart 1995)

Power Spectrum in the First Stage

- We use δN formalism to calculate the power spectrum in the first stage

$$
\begin{aligned}
P_{\zeta} & =N_{, \phi}^{2}\left\langle\delta \phi^{2}\right\rangle=\frac{3 H^{2}}{32 \pi^{2} M_{\mathrm{Pl}}^{2}}\left(\frac{1-2 F^{-1}+F^{-2}\left(1+4 / \mu^{2}\right)}{F^{-1}+F^{-2}\left(1+4 / \mu^{2}\right)}\right)^{2} \\
& =\frac{3 M^{2}}{128 \pi^{2} M_{\mathrm{Pl}}^{4}} \frac{\left(1-2 F^{-1}+F^{-2}\left(1+4 / \mu^{2}\right)\right)^{3}}{\left(F^{-1}+F^{-2}\left(1+4 / \mu^{2}\right)\right)^{2}} \\
& =\frac{V_{0}}{24 \pi^{2} M_{\mathrm{Pl}}^{4}}\left(\frac{3}{16} \mu^{2}\right) \frac{\left(1-2 F^{-1}+F^{-2}\left(1+4 / \mu^{2}\right)\right)^{3}}{\left(F^{-1}+F^{-2}\left(1+4 / \mu^{2}\right)\right)^{2}}
\end{aligned}
$$

- With the slow-roll parameters

$$
\begin{aligned}
\epsilon_{H}^{(1)} & =\frac{8}{3} \frac{\left(F-\left(1+4 / \mu^{2}\right)\right)^{2}}{\left(F^{2}-2 F+\left(1+4 / \mu^{2}\right)\right)^{2}} \\
\eta_{H}^{(1)} & =\frac{8}{3} \frac{F\left(F^{2}-2 F\left(1+4 / \mu^{2}\right)+\left(1+4 / \mu^{2}\right)\right)}{\left(F^{2}-2 F+\left(1+4 / \mu^{2}\right)\right)^{2}}
\end{aligned}
$$

Transition to

the Second Stage

- After ϕ stops slow-rolling, it becomes a "heavy field", and we can use the EFT method to integrate it out. (Tolley \& Wyman 2009, Achucarro, Gong, Hardeman, Palma \& Patel 2010.)
- The ϕ field goes to a "gelaton" solution

$$
\frac{\phi_{g}}{M_{\mathrm{Pl}}}=\sqrt{\frac{3}{2}} \ln \frac{\left(1-\xi \frac{\chi^{2}}{M_{\mathrm{Pl}}^{2}}\right)^{2}+\frac{4 V(\chi)}{3 M^{2} M_{\mathrm{Pl}}^{2}}}{1-\xi \frac{\chi^{2}}{M_{\mathrm{Pl}}^{2}}+\frac{2 X}{3 M^{2} M_{\mathrm{Pl}}^{2}}}
$$

- And the effective action at this trajectory is

$$
S_{g}=\int d^{4} x \sqrt{-g}\left\{\frac{M_{\mathrm{Pl}}^{2}}{2} R+\frac{X\left(1-\xi \frac{\chi^{2}}{M_{\mathrm{Pl}}^{2}}\right)+\frac{X^{2}}{3 M^{2} M_{\mathrm{Pl}}^{2}}-V(\chi)}{\left(1-\xi \frac{\chi^{2}}{M_{\mathrm{Pl}}^{2}}\right)^{2}+\frac{4 V(\chi)}{3 M^{2} M_{\mathrm{Pl}}^{2}}}\right\}
$$

Second Stage

- The inflation is now dominated by the scalar field χ, and the background evolution can be easily solved as

$$
\begin{aligned}
\chi & =\chi_{*} \exp \left[-\frac{m^{2} M_{\mathrm{Pl}}^{2}}{V_{0}}\left(N-N_{*}\right)\right]=\chi_{*} e^{-\frac{\eta_{H}^{(2)}}{2}\left(N-N_{*}\right)}, \\
\epsilon_{H}^{(2)} & \equiv-\frac{\dot{H}_{g}}{H_{g}^{2}}=\frac{1}{2 M_{\mathrm{Pl}}^{2}}\left(\frac{\partial \chi}{\partial N}\right)^{2} \frac{1}{1+4 / \mu^{2}}=\frac{m^{4} M_{\mathrm{Pl}}^{2}}{2 V_{0}^{2}} \frac{\chi^{2}}{1+4 / \mu^{2}}=\frac{\eta_{H}^{(2) 2}}{8} \frac{\left(\chi / M_{\mathrm{PI}}\right)^{2}}{1+4 / \mu^{2}} . \\
\eta_{H}^{(2)} & \equiv \frac{\dot{\epsilon}_{H}^{(2)}}{H_{g} \epsilon_{H}^{(2)}}=-\frac{\partial \ln \epsilon_{H}^{(2)}}{\partial N}=\frac{2 m^{2} M_{\mathrm{Pl}}^{2}}{V_{0}} .
\end{aligned}
$$

- But we know that ϕ does not lie on ϕ_{g} from the beginning: it rolls down to it from the Starobinsky plateau.
- The evolution of ϕ is just a classical perturbation to the "gelaton" trajectory $\phi_{g}: \phi=\phi_{g}+\Delta \phi$
- And the oscillation of ϕ can be solved as perturbations to the EFT solution.

$$
\ddot{\Delta} \phi+3 H \dot{\Delta} \phi+\sqrt{\frac{3}{2}} M^{2} M_{\mathrm{Pl}}\left(1-e^{-\sqrt{\frac{2}{3}} \frac{\Delta \phi}{M_{\mathrm{Pl}}}}\right) e^{-\sqrt{\frac{2}{3}} \frac{\Delta \phi}{M_{\mathrm{Pl}}}} \frac{\left(1+\frac{2 X}{3 M^{2} M_{\mathrm{Pl}}^{2}}\right)^{2}}{1+\frac{4 V}{3 M^{2} M_{\mathrm{Pl}}^{2}}}=0 .
$$

- After that we can linearize it and find its solution.

Second Stage

- The solution is

$$
\begin{aligned}
\frac{\Delta \phi}{M_{\mathrm{Pl}}} & =e^{\frac{3}{2}\left(N-N_{*}\right)} \sqrt{\frac{3}{2}} \ln \frac{F_{*}(\mu)}{1+\frac{4}{\mu^{2}}} \sqrt{1+\Upsilon^{2}} \cos \left[\left(\frac{\mu^{2}}{1+4 / \mu^{2}}-\frac{9}{4}\right)^{\frac{1}{2}}\left(N-N_{*}\right)+\arctan \Upsilon\right], \\
\Upsilon & =\left(\frac{\mu^{2}}{1+4 / \mu^{2}}-\frac{9}{4}\right)^{-\frac{1}{2}}\left[\frac{3}{2}-\frac{4}{3} \frac{F_{*}-1-4 / \mu^{2}}{F_{*}^{2}-2 F_{*}+1+4 / \mu^{2}}\left(\ln \frac{F_{*}}{1+4 / \mu^{2}}\right)^{-1}\right]
\end{aligned}
$$

- There is oscillation only for $\mu \gtrsim 2.08$
- There is also an upper bound for not violate inflation during the transition: $\mu \lesssim 8.95$

Power Spectrum In the Second Stage

- Since ϕ is a heavy field, its perturbations are exponentially suppressed.
- We can use δN formalism to calculate the power spectrum in the second stage, mainly contributed by the quantum fluctuations of χ.
- The dependence of e-folding number can be calculated by its slow-roll EoM, which is dynamically coupled to $\Delta \phi$.

$$
3 H\left(1-\frac{1}{3} \sqrt{\frac{2}{3}} \frac{\dot{\phi}}{H M_{\mathrm{Pl}}}\right) \dot{\chi}+e^{-\sqrt{\frac{2}{3}} \frac{\phi}{M_{\mathrm{Pl}}}} V^{\prime}(\chi)=0 .
$$

Power Spectrum In the Second Stage

$$
\begin{aligned}
& \frac{\partial N}{\partial \chi}=\frac{2}{\eta_{H}^{(2)} \chi}\left(1+\sqrt{\frac{2}{3}} \frac{\Delta \phi}{M_{\mathrm{Pl}}}+\frac{1}{3} \sqrt{\frac{2}{3}} \frac{\partial}{\partial N} \frac{\Delta \phi}{M_{\mathrm{Pl}}}\right) . \\
&\langle\delta \chi \delta \chi\rangle=F\langle\delta \hat{\chi} \delta \hat{\chi}\rangle=e^{\sqrt{\frac{2}{3}} \frac{\phi}{M_{\mathrm{Pl}}}}\left(\frac{H}{2 \pi}\right)^{2} \approx\left(1+\frac{4}{\mu^{2}}\right)\left(1+\sqrt{\frac{2}{3}} \frac{\Delta \phi}{M_{\mathrm{Pl}}}\right)\left(\frac{H}{2 \pi}\right)^{2} . \\
& \mathcal{P}_{\mathcal{R}}=\left(\frac{\partial N}{\partial \chi}\right)^{2}\langle\delta \chi \delta \chi\rangle, \\
&= \mathcal{P}_{\mathcal{R}}^{(0)}\left\{1-\frac{2}{3} e^{\frac{3}{2}\left(N-N_{*}\right)} \ln \frac{F_{*}}{1+\frac{4}{\mu^{2}}} \sqrt{1+\Upsilon^{2}}\left[\omega \sin \left(\omega\left(N-N_{*}\right)+\tan ^{-1} \Upsilon\right)\right.\right. \\
&\left.\left.-6 \cos \left(\omega\left(N-N_{*}\right)+\tan ^{-1} \Upsilon\right)\right]\right\}^{2},
\end{aligned}
$$

Power Spectrum In the Second Stage

$$
\begin{aligned}
& \mathcal{P}_{\mathcal{R}}^{(0)} \equiv \frac{H^{2}}{8 \pi \epsilon_{H}^{(2)} M_{\mathrm{Pl}}^{2}} \approx \frac{V_{0}}{24 \pi^{2} M_{\mathrm{Pl}}^{2}}\left(\frac{M_{\mathrm{Pl}}}{\chi_{*}}\right)^{2} \frac{8}{\eta_{H}^{(2)} e^{\frac{\eta_{H}^{(2)}}{2}\left(N-N_{*}\right)}} \\
& \\
& \mathcal{P}_{\mathcal{R}}=\left(\frac{\partial N}{\partial \chi}\right)^{2}\langle\delta \chi \delta \chi\rangle, \\
&=\mathcal{P}_{\mathcal{R}}^{(0)}\left\{1-\frac{2}{3} e^{\frac{3}{2}\left(N-N_{*}\right)} \ln \frac{F_{*}}{1+\frac{4}{\mu^{2}}} \sqrt{1+\Upsilon^{2}}\left[\omega \sin \left(\omega\left(N-N_{*}\right)+\tan ^{-1} \Upsilon\right)\right.\right. \\
&\left.\left.6 \cos \left(\omega\left(N-N_{*}\right)+\tan ^{-1} \Upsilon\right)\right]\right\}^{2},
\end{aligned}
$$

Power Spectrum In the Second Stage

$$
\begin{aligned}
& \mathcal{P}_{\mathcal{R}}^{(0)} \equiv \frac{H^{2}}{8 \pi \epsilon_{H}^{(2)} M_{\mathrm{Pl}}^{2}} \approx \frac{V_{0}}{24 \pi^{2} M_{\mathrm{Pl}}^{2}}\left(\frac{M_{\mathrm{Pl}}}{\chi_{*}}\right)^{2} \frac{8}{\eta_{H}^{(2)} 2} e^{\frac{\eta_{H}^{(2)}}{2}\left(N-N_{*}\right)} \\
& \\
& \mathcal{P}_{\mathcal{R}}=\left(\frac{\partial N}{\partial \chi}\right)^{2}\langle\delta \chi \delta \chi\rangle, \\
&=\mathcal{P}_{\mathcal{R}}^{(0)}\left\{1-\frac{2}{3} e^{\frac{3}{2}\left(N-N_{*}\right)} \ln \frac{F_{*}}{1+\frac{4}{\mu^{2}}} \sqrt{1+\Upsilon^{2}}\left[\omega \sin \left(\omega\left(N-N_{*}\right)+\tan ^{-1} \Upsilon\right)\right.\right. \\
&\left.\left.-6 \cos \left(\omega\left(N-N_{*}\right)+\tan ^{-1} \Upsilon\right)\right]\right\}^{2},
\end{aligned}
$$

Power Spectrum In the Second Stage

$$
\begin{aligned}
& \mathcal{P}_{\mathcal{R}}^{(0)} \equiv \frac{H^{2}}{8 \pi \epsilon_{H}^{(2)} M_{\mathrm{Pl}}^{2}} \approx \frac{V_{0}}{24 \pi^{2} M_{\mathrm{Pl}}^{2}}\left(\frac{M_{\mathrm{Pl}}}{\chi_{*}}\right)^{2} \frac{8}{\eta_{H}^{(2)} e^{\frac{\eta_{H}^{(2)}}{2}\left(N-N_{*}\right)}} \\
& \mathcal{P}_{\mathcal{R}}
\end{aligned}=\left(\frac{\partial N}{\partial \chi}\right)^{2}\langle\delta \chi \delta \chi\rangle, \quad \omega \equiv \sqrt{\frac{\mu^{2}}{1+4 / \mu^{2}}-\frac{9}{4}}
$$

Power Spectrum In the Second Stage

$$
\begin{aligned}
& \mathcal{P}_{\mathcal{R}}^{(0)} \equiv \frac{H^{2}}{8 \pi \epsilon_{H}^{(2)} M_{\mathrm{Pl}}^{2}} \approx \frac{V_{0}}{24 \pi^{2} M_{\mathrm{Pl}}^{2}}\left(\frac{M_{\mathrm{Pl}}}{\chi_{*}}\right)^{2} \frac{8}{\eta_{H}^{(2)}} e^{\frac{\eta_{H}^{(2)}}{2}\left(N-N_{*}\right)}, \\
& \mathcal{P}_{\mathcal{R}}=\left(\frac{\partial N}{\partial \chi}\right)^{2}\langle\delta \chi \delta \chi\rangle, \\
&=\mathcal{P}_{\mathcal{R}}^{(0)}\left\{1-\frac{2}{3} e^{\frac{3}{2}\left(N-N_{*}\right)} \ln \frac{F_{*}}{1+\frac{4}{\mu^{2}}} \sqrt{1+\Upsilon^{2}}\left[\int_{\omega}^{\frac{\mu^{2}}{1+4 / \mu^{2}}-\frac{9}{4}}\right.\right. \\
&\left.\left.-6 \cos \left(\omega\left(N-N_{*}\right)+\tan ^{-1} \Upsilon\right)\right]\right\}^{2}, \\
& \text { Order 1 pre-factor }\left(\omega\left(N-N_{*}\right)+\tan ^{-1} \Upsilon\right)
\end{aligned}
$$

Contents

- Introduction: Motivations
- Set up and calculation
- Results and applications
- Conclusion

Application at large scales: Large scale anomaly

CMB anisotropy for $k *=\left(10^{5} \mathrm{Mpc}\right)^{-1}$.

Application at small scales: PBH as dark matter

- If the peak of density spectrum has exceeded some critical value $\delta_{c}(\sim 0.4)$, there will be PBH formation when the mode re-enters the horizon. (Carr, Kühnel, Sandstad 2016)
- Initial mass fraction:

$$
\beta(M) \sim \int_{\delta_{c}}^{\infty} P\left(\delta\left(M_{H}\right)\right) d \delta\left(M_{H}\right)
$$

- For a Gaussian probability distribution:

$$
\beta(M)=\operatorname{erfc}\left(\frac{\delta_{c}}{\sqrt{2} \sigma\left(M_{H}\right)}\right)
$$

- M_{H} is the horizon mass at re-entry, and $\sigma\left(M_{H}\right)$ is the variance of its PDF.
- And β can be transferred to the mass spectrum today by

$$
f \sim 10^{9}\left(\frac{M}{M_{\odot}}\right)^{1 / 2} \beta(M)
$$

Application at small scales: PBH as dark matter

- On CMB scales $\sigma\left(M_{H}\right) \approx 10^{-5}$, and β is exponentially suppressed.
- At transition there is a huge enhancement of the power spectrum, where $\sigma\left(M_{H}\right)$ may be around $\sigma\left(M_{H}\right) \approx 10^{-2}$. And a significant amount of PBHs may be produced at the reentry.

Carr, Kühnel \&Sandstad 2016. Borrowed from Anne Green's slides.

However, the wave effect may weaken the constraints at $10^{20} \sim 10^{24} \mathrm{~g}$, Takada, talk@IPMU, see also Inomata et. al. 2017

However, the wave effect may weaken the constraints at $10^{20} \sim 10^{24} \mathrm{~g}$, Takada, talk@IPMU, see also Inomata et. al. 2017

Count the efoldings for PBH production

Count the efoldings for PBH production

PBH mass: $\quad M_{\mathrm{PBH}} \sim M_{H} \sim \frac{M_{\mathrm{Pl}}^{2}}{H_{*}} e^{2\left(N_{2}+N_{\mathrm{osi}} / 4\right)}=\frac{M_{\mathrm{Pl}}^{2}}{H_{*}} e^{2\left(60-N_{1}\right)}$

Count the efoldings for PBH production

PBH mass: $\quad M_{\mathrm{PBH}} \sim M_{H} \sim \frac{M_{\mathrm{Pl}}^{2}}{H_{*}} e^{2\left(N_{2}+N_{\text {osi }} / 4\right)}=\frac{M_{\mathrm{Pl}}^{2}}{H_{*}} e^{2\left(60-N_{1}\right)}$
Inverse relation: $\quad N_{1}=44.4-\frac{1}{2} \ln \left(\frac{M_{\mathrm{PBH}}}{10^{16} \mathrm{~g}}\right)$.

Summary

- $R^{2}+$ scalar field \equiv two-field with non-trivial field metric.
- Scalar field may provide a second stage inflation after the end of Starobinsky-stage.
- The transition of two stages may give enhanced features on the power spectrum.
- This enhanced "feature" can be used to produce PBHs as dark matter.

