Concentrations of Simulated Dark Matter Halos

Hillary Child

KAV

DI

Why Concentrations?

Navarro-Frenk-White (NFW) Profile

$$\frac{dM}{dr} = \frac{M_{\Delta}}{A(c_{\Delta})} \frac{r}{(r_s + r)^2}$$
$$A(c_{\Delta}) = \ln(1 + c_{\Delta}) - \frac{c_{\Delta}}{1 + c_{\Delta}}$$
$$Concentration: c_{\Delta} = \frac{r_{\Delta}}{r_s}$$

Fit vs. Accumulated Mass vs. Peak

c-M Relation

Stacked Profile

Stacked c-M

Relaxed Fraction

Relaxed Fraction

Other Simulations

Conclusion

- State-of-the-art simulations provide superior statistics for concentration measurement
- Two methods to find the concentration of (stacked and individual) simulated halos
- Concentration-mass relation: agreement with observations and other simulations
- Scaling by M*: power-law behavior below a threshold mass, transition to constant