TOWARDS A COMPLETE SCENARIO OF THE EARLY UNIVERSE

Taotao Qiu
Central China Normal University
2017-12-13@CosPA, YITP, Kyoto University
Standard Cosmology

Big-Bang Scenario

A. H. Guth/A. D. Linde/A. Starobinsky/…
(1980’s)

Inflation Scenario

SINGULARITY!!!

(Alpher/Bethe/Gamow 1948)
The Singularity Problem

Singularity Theorem:

The universe will meet a singularity when
(1) it is described by General Relativity;

\[S = \int d^4x \sqrt{-g} \left[\frac{R}{16\pi G} + L_m \right] \]

(2) it satisfies Null Energy Condition;

\[T_{\mu\nu} n^\mu n^\nu = [\rho + P] u_\mu u_\nu + g_{\mu\nu} P n^\mu n^\nu \]

\[= (\rho + P)(u_\mu n^\mu)^2 + P n_\mu n^\mu \]

\[= (\rho + P) \geq 0 \]

for any null vector \(n^\mu \):

\[u_\mu n^\mu = 1 \]

\[n_\mu n^\mu = 0 \]

Where at finite time point

\[a_u (t) \to 0, \quad \rho_u (t) \to \infty \]

One of the Solutions: Bounce Cosmology

Contraction: $H < 0$ Expansion: $H > 0$

Bouncing Point: $\dot{H} > 0$ $\rho + p < 0$

Violating the Null Energy Condition (NEC)!
Issues of Bounce Cosmology and its Solutions

BACKGROUND

Anisotropy Problem

PERTURBATIONS

Scale Invariance of Power Spectrum
Ghost Instability
Gradient Instability
Issues of Bounce Cosmology and its Solutions

BACKGROUND

Anisotropy Problem

PERTURBATIONS

Scale Invariance of Power Spectrum
Ghost Instability
Gradient Instability
If the initial metric is not exact isotropic:

\[
ds^2 = -dt^2 + a^2(t) \sum_{i=1}^{3} e^{2\beta_i(t)} dx_i^2
\]

Friedmann Equation:

\[
3H^2 = \rho_{bg} + \frac{1}{2} \sum_{i=1}^{3} \dot{\beta}_i^2
\]

Equation of motion for anisotropy:

\[
\ddot{\beta}_i + 3H \dot{\beta}_i = 0 \quad \Rightarrow \quad w_{ani} = 1
\]

\[
\rho_{ani} \propto a^{-3(1+w)} = a^{-6}
\]

So we need contracting phase with \(w > 1 \)!

J. Erickson, D. Wesley, P. Steinhardt, N. Turok, **Phys.Rev. D69 (2004) 063514.**
One of the Solutions: Ekpyrosis

The effective potential (Ekpyrotic phase):

\[V(\phi) = -V_0 \exp\left(-\frac{2}{p M_p} \frac{\phi}{\phi^2 - 2V} \right) < 0 \]

In order to make

\[w_{\text{eff}} = \frac{\dot{\phi}^2 - 2V}{\dot{\phi}^2 + 2V} > 1 \]

1 DE domination; 2 decelerated expansion; 3 turnaround; 4 Ekpyrotic contraction; 5 before big crunch; 6 a singular bounce in 4D; 7 after big bang; 8 radiation domination; 9 matter domination

Khoury, Ovrut, Steinhardt & Turok, PRD64:123522, 2001
Issues of Bounce Cosmology and its Solutions

BACKGROUND

- Anisotropy Problem

PERTURBATIONS

- Scale Invariance of Power Spectrum
- Ghost Instability
- Gradient Instability
Scale Invariance of Power Spectrum

Observational data (Planck 2015):

The perturbation equation:

\[(z\xi)'' + \left(c_s^2k^2 - \frac{z''}{z}\right)(z\xi) = 0\]

Solution:

\[\xi \sim (c_\xi k)^{\frac{3}{2} \frac{1-w}{21+3w}} \eta^0, \quad \left(c_\xi k\right)^{\frac{3}{2} \frac{1-w}{21+3w}} \eta \quad \text{constant growing for viable bounce models}\]

Power spectrum:

\[P_\xi \equiv \frac{k^3}{2\pi^2} |\xi|^2 \sim k^{\frac{3-3(1-w)}{1+3w} - \frac{1-w}{1+3w}} \eta\]

\[n_s - 1 = 3 - \frac{3(1-w)}{1+3w} \approx 0 \quad \Rightarrow \quad w \approx 0\]

D. Wands, PRD 1999,

David Wands Robert Brandenberger
Scale Invariance of Power Spectrum

The numerical plots of the power spectrum and spectral index:

Y. F. Cai, T. Qiu, R. Brandenberger, X. M. Zhang, PRD 2009
To Be Large or Not To Be Large? Is it a Problem?

POSSIBLE SOLUTIONS:
1) To have another field in contracting phase to generate power spectrum (Entropic Mechanism);
 F. Finelli, PLB 2002;
 K. Koyama and D. Wands, JCAP 2007;
 K. Koyama, S. Mizuno, D. Wands, CQG 2007;
 T. Qiu, X. Gao and E. N. Saridakis, PRD 2014… …
2) To have inflationary period following the bounce (Bounce Inflation).
 Y. S. Piao, B. Feng and X. M. Zhang, PRD 2004;
 J. Q. Xia, Y. F. Cai, H. Li and X. M. Zhang, PRL 2014;
 T. Qiu and Y. T. Wang, JHEP 2015……
Issues of Bounce Cosmology and its Solutions

BACKGROUND

Anisotropy Problem

PERTURBATIONS

Scale Invariance Of Power Spectrum

Ghost Instability

Gradient Instability
Ghost Instability

NEC violation will generally cause ghost mode!

Example: “Phantom” Energy

Lagrangian:

\[L_{phantom} = -\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - V(\phi) \]

Hamiltonian (density):

\[H_{phantom} = \Pi \dot{\phi} - L = -\omega \int d^3k (a_k^\dagger a_k + \frac{1}{2}) \]

unbounded energy!

Solution: Galileon Theories

\[L_2 = K(\phi, X) \]

\[L_3 = -G_3(\phi, X)\Box \phi \]

\[L_4 = G_4(\phi, X)R + G_{4,X}[(\Box \phi)^2 - (\nabla_\mu \nabla_\nu \phi)^2] \]

\[L_5 = G_5(\phi, X)G_{\mu\nu} \nabla^\mu \nabla^\nu \phi - G_{5,X}[(\Box \phi)^3 - 3\Box \phi (\nabla_\mu \nabla_\nu \phi)^2 + 2(\nabla_\mu \nabla_\nu \phi)^3] / 6 \]

1) Higher derivative in lagrangian but 2nd order in equation of motion
2) Multi-degrees of freedom but only one is dynamical
3) violating NEC free of ghosts.

e. g. (T. Qiu et al., JHEP 2011)

\[L = F^2 e^{2\phi} (\partial \phi)^2 + \frac{F^3}{2M^3} (\partial \phi)^4 + \frac{F^3}{M^3} (\partial \phi)^2 \Box \phi \]

Perturbation action:

\[\delta^{(2)} S = 3 \int dtd^3xDM_p^2 \left[\xi^2 - \frac{c_s^2}{a^2} (\partial \xi)^2 \right] \]

Ghost Free!
Solution: Galileon Theories

Taking into account the anisotropic and scale invariance issues, one can get more improved models:

1) multi-field bounce model (T. Qiu, X. Gao and E. N. Saridakis, PRD 2013):

\[S = \int d^4x \sqrt{-g} \left[\frac{R}{16\pi G} + X - V(\phi) - gX\Box\phi \right] \]

\[V(\phi) = -V_0 e^{\phi} \]

2) bounce inflation model (T. Qiu, Y. T. Wang, JHEP 2015):

\[S = \int d^4x \sqrt{-g} \left[\frac{R}{16\pi G} + k(\phi)X + t(\phi)X^2 - V(\phi) - G(\phi, X)\Box\phi \right] \]

\[V(\phi) = -V_0 [1 - \tanh(\lambda_1 \frac{\phi}{\phi_B})] e^{\phi} + \Lambda^4 [1 + \tanh(\lambda_2 \frac{\phi}{\phi_B})](1 - \frac{\phi^2}{\phi^2})^2 \]
Issues of Bounce Cosmology and its Solutions

BACKGROUND
Anisotropy Problem

PERTURBATIONS
Scale Invariance Of Power Spectrum
Ghost Instability
Gradient Instability
Gradient Instability

In our model building, we found that it is difficult to also have the sound speed squared to be positive all the time.

The perturbation EoM:

\[u''_k + \left(c_s^2 k^2 - \frac{z''}{z} \right) u_k = 0 \]

sound speed squared

For \(c_s^2 < 0 \)

\[u_k \sim e^{i\sqrt{c_s^2} k \eta} \sim e^{\pm|c_s|k \eta} \]

for large k modes.

No-go Theorem

It has been proved that gradient instability is inevitable in cubic Galileon theories!

Abstract. We study spatially flat bouncing cosmologies and models with the early-time Genesis epoch in a popular class of generalized Galileon theories. We ask whether there exist solutions of these types which are free of gradient and ghost instabilities. We find that irrespectively of the forms of the Lagrangian functions, the bouncing models either are plagued with these instabilities or have singularities. The same result holds for the original Genesis model and its variants in which the scale factor tends to a constant as $t \to -\infty$. The result remains valid in theories with additional matter that obeys the Null Energy Condition and interacts with the Galileon only gravitationally. We propose a modified Genesis model which evades our no-go argument and give an explicit example of healthy cosmology that connects the modified Genesis epoch with inflation (the epoch still driven by the Galileon field, which is a conventional massless scalar field at that stage).

It is this set of issues we address in this paper. We consider the simplest and best studied generalized Galileon theory interacting with gravity. The Lagrangian is (mostly negative signature; $\kappa = 8\pi G$)

$$ L = -\frac{1}{2\kappa} R + F(\pi, X) + K(\pi, X) \Box \pi, \quad (1.1) $$

Contents

1. Introduction and summary 1
2. Generalities 3
3. Bouncing Universe and original Genesis: no-go 5
4. Modified Genesis 6
4.1. Early-time evolution

Although linear perturbation theory suggests that, for some constructions, cubic Galileon theories can avoid pathologies during a period of NEC violation, it has been unclear until now whether this is possible when the NEC violating period includes a non-singular bounce. In fact, the recent arguments suggest that either the speed of sound of co-moving curvature modes becomes imaginary (i.e., ghost or gradient instability) for some wavelengths during the NEC violating phase [6, 7] or the evolution must reach a singularity [8].

M. Libanov, S. Mironov, V. Rubakov, JCAP 1608 (2016) no.08, 037;

Solution: one must consider theories beyond cubic Galileon!
The Effective field theory lagrangian (Cheung et al., 2007; Gleyzes et al., 2013; Kase et al., 2014)

\[
S = \int d^4x \sqrt{-g} \left[\frac{M_p^2}{2} f(t) R - \Lambda(t) - c(t) g^{00}
+ \frac{M_4^4(t)}{2} (\delta g^{00})^2 - \frac{m_3^3(t)}{2} \delta K \delta g^{00} - m_4^2(t) (\delta K^2 - \delta K_{\mu\nu} \delta K^{\mu\nu}) + \frac{\tilde{m}_4^2(t)}{2} R^{(3)} \delta g^{00}
- \tilde{m}_4^2(t) \delta K^2 + \frac{\tilde{m}_5(t)}{2} R^{(3)} \delta K + \frac{\tilde{\lambda}(t)}{2} (R^{(3)})^2 + ...
- \frac{\tilde{\lambda}(t)}{M_p^2} \nabla_i R^{(3)} \nabla^i R^{(3)} + ... \right],
\]

Cubic Galileon: \[f = 1 \quad m_4^2 = \tilde{m}_4^2 = \bar{m}_4^2 = \bar{m}_5 = \bar{\lambda} = \tilde{\lambda} = 0 \]

Horndeski: \[m_4^2 = \tilde{m}_4^2 \quad \bar{m}_4^2 = \bar{m}_5 = \bar{\lambda} = \tilde{\lambda} = 0 \]

Beyond Horndeski (high order space derivative): every coefficient can be non-zero!
Eliminating The Gradient Instability

According to the No-Go Theorem proved using EFT approach (Y. Cai, Y. Wan, H. Li, T. Qiu, Y. S. Piao, JHEP (2017); Y. Cai, H. Li, T. Qiu, Y. S. Piao, EPJC (2017))

$$\gamma_i < 0 \quad \gamma_i > 0$$

<table>
<thead>
<tr>
<th>Cubic Galileon</th>
<th>No way</th>
<th>No way</th>
</tr>
</thead>
</table>
| Beyond cubic galileon (in EFT language) | $Q_T = 0:$
$\gamma \sim (t - t_\gamma)^p$, $Q_T \sim (t - t_\gamma)^n$,
$n \geq 2p$
$Q_{\tilde{m}_4} = 0$ | $Q_T = 0:$
$Q_T \sim (-t)^{-p}$, $\gamma \sim (-t)^{-n}$,
$p > n > 1$
$Q_{\tilde{m}_4} = 0$ |

where

$$\gamma = HQ_T - \frac{m_3^3}{2M_p^2} + \frac{1}{2}f$$

Q_T is the coefficient in front of kinetic term of tensor perturbation action.
Model Construction

According to this conclusion, we can construct models free of gradient instability!

Action of a New Bounce Inflation Model:

\[S = \int d^4x \sqrt{-g} \left[\frac{M_P^2}{2} R + \mathcal{K}(\phi) X - G_3(\phi, X) \Box \phi + T(\phi) X^2 - V(\phi) + \frac{\tilde{m}_4^2(t)}{2} R(3) \delta g^{00} \right] \]

Background

\[c_s^2 \text{ with/without the } \frac{\tilde{m}_4^2(t)}{2} R(3) \delta g^{00} \text{ term} \]

Evolution of \(\tilde{m}_4^2(t) \)

(green/brown)

For covariant models, see Y. Cai and Y. S. Piao, JHEP 2017;
Y. Cai, Y. T. Wang, J. Y. Zhao and Y. S. Piao, 1709.07464;
Conclusion

• Singularity problem can be solved by a bounce scenario, but there are new problems.

• Anisotropy problem---Ekpyrotic phase contraction;

• Scale invariance---Matter contraction/Multifield contraction/Bounce Inflation;

• Ghost instability---Galileon/Horndeski/Beyond H;

• Gradient instability---EFT approach;

• will there be other problems?

• Maybe we can also consider the modified gravity approach...
Thanks For Attention!

MR. BOUNCE
by Roger Hargreaves