Hints of axionic blue isocurvature?

CosPA 2017

Amol Upadhye UNSW Sydney December 13, 2017

- Motivation: Inflation as a high-energy backlight illuminating new physics (fields and particles)
- Blue isocurvature: What and how
- A simple SUSY axionic model for blue isocurvature
 - Homogeneous field evolution
 - Perturbations and power spectra
- Constraints from CMB and large-scale structure data

Chung, AU, PRD **95**:023503(2017)[1610.04284] Chung, AU, 1711.06736

Isocurvature

We expect isocurvature perturbations when additional (spectator) fields are non-negligible during inflation.

Isocurvature can't be blue at all scales

Isocurvature with a constant spectral index can't be bluer than $n_I = 2.4$. *Chung*, *PRD* **94**:043524(2016)[1509.05850]

umappending and and the

"Hat" potential $V(\Phi) = (\Phi^2 - F_a^2)^2$

Amol Upadhye

Hints of axionic blue isocurvature?

Supersymmetric axion model

Superpotential $W = h(\Phi_+\Phi_- - F_a^2)\Phi_0$ for chiral superfields with charges +1, -1, and 0 under U(1) Peccei-Quinn symmetry

Flat direction: $\Phi_0 = 0$, $\Phi_+ \Phi_- = F_a^2$. Potential along the flat direction, including $\sim H$ mass corrections (from Kähler potential):

$$V = h^{2} \left| \Phi_{+} \Phi_{-} - F_{a}^{2} \right|^{2} + c_{+} H^{2} \left| \Phi_{+} \right|^{2} + c_{-} H^{2} \left| \Phi_{-} \right|^{2}$$

• "roll speed"
$$\gamma=rac{3}{2}\left(1-\sqrt{1-rac{4}{9}c_+}
ight)$$
 with $\Phi_+\propto\exp(-\gamma Ht);$

• spectral index $n_{I} = 1 + 2\gamma = 4 - 3\sqrt{1 - \frac{4}{9}c_{+}}$

• blue e-folds:
$$\eta_* = \gamma^{-1} \log \left(\frac{\Phi_{+,\text{in}}}{F_a} \frac{c_+^{1/4}}{c_-^{1/4}} \right)$$

•
$$\frac{k_*}{a_0}\Big|_{n_l=4} \lesssim 10 \text{ Mpc}^{-1} e^{-(N_e-50)} \left(\frac{\Phi_{+,\text{in}}}{0.3M_{\text{Pl}}}\right)^{\frac{2}{3}} \left(\frac{T_{\text{rh}}}{0.1H_{\text{in}}}\right)^{\frac{1}{3}} \left(\frac{H_{\text{in}}}{0.001F_a}\right)^{\frac{2}{3}}$$

Kasuya and Kawasaki, PRD **80**:023516(2009)[0904.3800] Chung and Yoo, PRD **91**:083530(2015)[1501.05618] Chung, AU, PRD **95**:023503(2017)[1610.04284]

Power spectrum from analytic arguments

Kasuya and Kawasaki, PRD 80:023516(2009)[0904.3800],

Chung and Yoo, PRD 91:083530(2015)[1501.05618]

Amol Upadhye

Hints of axionic blue isocurvature?

Field evolution in homogeneous universe

Chung and Upadhye, PRD 95:023503(2017)[1610.04284]

Blue-to-flat transition

Amol Upadhye

Hints of axionic blue isocurvature?

End of inflation

Evolution of linear perturbations

Power spectrum, $c_+ = 2.235$

Chung and Upadhye, PRD 95:023503(2017)[1610.04284]

Amol Upadhye Hints

Hints of axionic blue isocurvature?

Bluer spectra get bigger bumps

Chung and Upadhye, PRD 95:023503(2017)[1610.04284]

Amol Upadhye

Hints of axionic blue isocurvature?

Constraints from Planck and BOSS data

 $\kappa_{\star} = \ln(k_{\star}/k_0)$ and $Q_n = 10^{10}Q_{\mathrm{flat}}/(1+e^{n_l\kappa_{\star}})$ with $k_0 = 0.05/\mathrm{Mpc}$

Adam, et al., A&A **594**:A10(2016); Aghanim, et al., A&A **594**:A11(2016) Beutler, et al., MNRAS **443**:1065(2014); Beutler, et al., MNRAS **444**:3501(2014)

Constraints from Planck and BOSS data

 $\kappa_{\star} = \ln(k_{\star}/k_0)$ and $Q_n = 10^{10}Q_{\mathrm{flat}}/(1+e^{n_l\kappa_{\star}})$ with $k_0 = 0.05/\mathrm{Mpc}$

Beutler, et al., MNRAS 443:1065(2014); Beutler, et al., MNRAS 444:3501(2014)

Constraints from Planck and BOSS data

 $\kappa_{\star} = \ln(k_{\star}/k_0)$ and $Q_n = 10^{10}Q_{\mathrm{flat}}/(1+e^{n_l\kappa_{\star}})$ with $k_0 = 0.05/\mathrm{Mpc}$

Constraints on the bluest models: $n_l = 3.9$, $k_{\star} = 0.5/Mpc$

Implications for phenomenology

Conclusions

- Cosmic inflation can serve as a backlight illuminating other physics at high energies.
- **2** A SUSY axion model with a time-variation in its mass gives rise to extremeley blue-tilted isocurvature spectra $n_l \leq 4$.
- Power spectra for the bluest models have a bump at the transition scale which we have fit numerically. This cannot be pushed beyond k_{*} ≈ 10/Mpc for the bluest tilts.
- CMB and galaxy survey data allow a broad range of models and show $\approx 2\sigma$ hints for very blue-tilted isocurvature.
- Sest-fit models are consistent with axion angle $\theta_{in} = 0.1$ and allow axions to make up all of the dark matter.

Chung, AU, PRD **95**:023503(2017)[1610.04284] Chung, AU, 1711.06736

Extra slides

Could isocurvature explain high- ℓ vs. low- ℓ shift?

2.5 σ discrepancy between $\Omega_c h^2$ values determined using $\ell < 1000$ and $\ell \ge 1000$ data (Addison, et al., Ap. J. 818:132(2016)[1511.00055])

Planck + BOSS parameter constraints

	KK+ <i>b</i> ₅ , PB	$ $ KK+ ω_{ν} + b_5 , PB	KK, PB	NB, PB
ns	$0.9653 {}^{+0.0041}_{-0.0042} {}^{+0.0081}_{-0.0086}$	$0.9668 \substack{+0.0048 \\ -0.0047 } \substack{+0.0095 \\ -0.01}$	$0.965 \substack{+0.0042 \\ -0.0045 } \substack{+0.0085 \\ -0.0084 }$	$0.9651 \substack{+0.0041 \\ -0.0043 } \substack{+0.0086 \\ -0.0086}$
σ_8	$0.821 \substack{+0.018 \\ -0.017 } \substack{+0.034 \\ -0.035}$	$0.809 {}^{+0.021}_{-0.015} {}^{+0.036}_{-0.036}$	$0.818 \substack{+0.018 \\ -0.018 } \substack{+0.034 \\ -0.034 }$	$0.819 \substack{+0.018 \\ -0.018 } \substack{+0.033 \\ -0.037 }$
h	$0.6768 {}^{+0.0052}_{-0.0045} {}^{+0.0093}_{-0.0098}$	$0.6717 {}^{+0.0069}_{-0.0057} {}^{+0.012}_{-0.013}$	$0.6764 {}^{+0.0048}_{-0.005} {}^{+0.0099}_{-0.0098}$	$0.6762 {}^{+0.005}_{-0.005} {}^{+0.01}_{-0.01}$
ω_{c}	$0.1188 \substack{+0.001 \\ -0.0011 } \substack{+0.0021 \\ -0.002}$	$0.1183 \substack{+0.0011 \\ -0.0014 } \substack{+0.0029 \\ -0.0025 }$	$0.1189 \substack{+0.0011 \\ -0.0011 \ -0.0022}^{+0.0011 \ +0.0021}$	$0.119 {}^{+0.0011}_{-0.0012} {}^{+0.0022}_{-0.0022}$
ω_{b}	$0.02226 \substack{+0.00013 \\ -0.00014 } \substack{+0.00028 \\ -0.00028 }$	$0.0223 \substack{+0.00015 \\ -0.00016 } \substack{+0.0003 \\ -0.0003 }$	$0.02227 \substack{+0.00014 \\ -0.00014 } \substack{+0.00029 \\ -0.00028}$	$0.02225 \substack{+0.00013 \\ -0.00015 } \substack{+0.00028 \\ -0.0002}$
$\omega_{ u}$	Col 1 and	$0.0014 \substack{+0.0005 \\ -0.0011 -0.0014}^{+0.0016}$		
τ	$0.071 \substack{+0.024 \\ -0.02 } \substack{+0.043 \\ -0.045 }$	$0.082 \substack{+0.032 \\ -0.027 } \substack{+0.049 \\ -0.058}$	$0.067 \substack{+0.025 \\ -0.022 } \substack{+0.043 \\ -0.051}$	$0.067 \substack{+0.025 \\ -0.024} \substack{+0.044 \\ -0.047}$
Qn	$1.0 {}^{+0.3}_{-1.0} {}^{+1.3}_{-1.0}$	$1.1 \substack{+0.3 \\ -1.0 -1.1} \stackrel{+1.5}{-1.1}$	$0.96 {}^{+0.32}_{-0.93} {}^{+1.3}_{-0.96}$	$1.1 ^{+0.3}_{-1.0} \ ^{+1.4}_{-1.1}$
nı	$2.72^{+1.2}_{-0.69} {}^{+1.2}_{-1.2}$	$2.78 {}^{+1.1}_{-0.59} {}^{+1.2}_{-1.2}$	$2.76^{+1.1}_{-0.59} {}^{+1.2}_{-1.2}$	$2.65 \substack{+0.75 \\ -0.7 } \substack{+1.2 \\ -1.2}$
κ_{\star}	$-0.37 {}^{+1.5}_{-0.98} {}^{+2.6}_{-2.7}$	$-0.21^{+1.3}_{-1.1}~^{+2.5}_{-2.5}$	$-0.21^{+1.5}_{-1.1}~^{+2.5}_{-2.4}$	$-0.31^{+1.5}_{-1.2}~^{+2.6}_{-2.4}$

Chung, AU, 1711.06736