・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Effective Stress-energy Tensor and Gravitational Radiation from Binary Systems in Horndeski Theory

Shaoqi Hou

Huazhong University of Science and Technology Wuhan, Hubei Province, China

arXiv:1711.05034

CosPA 2017 Dec. 11-15, 2017 Yukawa Institute for Theoretical Physics Kyoto University, Japan

Table of Contents

Introduction

2 Horndeski Theory

3 Effective Stress-energy Tensor

4 Near Zone Solutions

Gravitational Radiation

6 Summary

	Horndeski Theory	Effective Stress-energy Tensor	Near Zone Solutions	Gravitational Radiation	
Introduction					

- Scalar-tensor theory $(g_{\mu\nu}, \phi)$: Brans-Dicke theory, f(R) gravity, Einstein-dilaton-Gauss-Bonnet gravity (EdGB), Horndeski theory...
- Effective stress-energy tensor: flat background
- Nordtvedt effect: violation of Strong Equivalence Principle (vSEP)
- Shapiro time delay
- Gravitational Waves (GWs) detected:

NS-NS GW170817 (GRB 170817A: $\left|\frac{v_{GW}-c}{c}\right| \lesssim 10^{-15}$ [3])

- Previous constraints:
 - Creminelli & Vernizzi [4]: $\partial G_5 / \partial X = 0$ and $2\partial G_4 / \partial X + \partial G_5 / \partial \phi = 0$ (Effective Field Theory of Dark Energy)
 - 2 Ézquiaga & Zumalacárregui [5]: $\partial G_4 / \partial X \approx 0$ and $G_5 \approx \text{constant}$
 - and other constraints on subclasses [6, 7, 8, 9, 10, 11, 12, 13, 14]...

Horndeski Theory

• Action [15]:

$$\begin{split} S &= \int d^4 x \sqrt{-g} (\mathscr{L}_2 + \mathscr{L}_3 + \mathscr{L}_4 + \mathscr{L}_5) + S_m [g_{\mu\nu}, \psi_m], \\ \mathscr{L}_2 &= G_2(\phi, X), \, \mathscr{L}_3 = -G_3(\phi, X) \Box \phi, \\ \mathscr{L}_4 &= G_4(\phi, X) R + G_{4X} [(\Box \phi)^2 - (\phi_{;\mu\nu})^2], \\ \mathscr{L}_5 &= G_5(\phi, X) G_{\mu\nu} \phi^{;\mu\nu} - \frac{G_{5X}}{6} [(\Box \phi)^3 - 3(\Box \phi)(\phi_{;\mu\nu})^2 + 2(\phi_{;\mu\nu})^3]. \end{split}$$

•
$$\phi_{;\mu} = \nabla_{\mu}\phi, X = -\phi_{;\mu}\phi^{;\mu}/2, \ \phi_{;\mu\nu} = \nabla_{\nu}\nabla_{\mu}\phi, \ \Box\phi = g^{\mu\nu}\phi_{;\mu\nu}, \ (\phi_{;\mu\nu})^2 = \phi_{;\mu\nu}\phi^{;\mu\nu} \text{ and } (\phi_{;\mu\nu})^3 = \phi_{;\mu\nu}\phi^{;\mu\rho}\phi^{;\nu}_{;\rho}$$

Subclasses:

	G ₂	G ₃	G_4	G_5
BD	$2\omega X/\phi$	0	ϕ	0
f(R)	$f(\phi) - \phi f'(\phi)$	0	$f'(\phi)$	0
EdGB	$X+8\xi^{(4)}X^2(3-\ln X)$	$4\xi^{(3)}X(7-3\ln X)$	$\frac{1}{2} + 4\xi^{(2)}X(2 - \ln X)$	$-4\xi^{(1)} \ln X$
SSHT	$G_2(X)$	$G_3(X)$	$G_4(X)$	$G_5(X)$

Introduction Horndeski Theory Effective Stress-energy Tensor Near Zone Solutions Gravitational Radiation Summary

Horndeski Theory: Matter Action for Systems of Stars

• Matter action according to Eardley's prescription [16]:

$$S_m = -\sum_a \int m_a(\phi) \mathrm{d} au_a$$

•
$$g_{\mu
u} = \eta_{\mu
u} + h_{\mu
u}$$
 and $\phi = \phi_0 + \varphi$

• Expand $m_a(\phi)$:

$$m_{a}(\phi) = m_{a}\left[1 + rac{\varphi}{\phi_{0}}s_{a} - rac{1}{2}\left(rac{\varphi}{\phi_{0}}
ight)^{2}(s_{a}' - s_{a}^{2} + s_{a}) + \cdots
ight].$$

• $m_a = m_a(\phi_0)$, and sensitivities \rightsquigarrow vSEP

$$s_{a} = \frac{\mathrm{d} \ln m_{a}(\phi)}{\mathrm{d} \ln \phi}\Big|_{\phi_{0}}, \quad s'_{a} = -\frac{\mathrm{d}^{2} \ln m_{a}(\phi)}{\mathrm{d} (\ln \phi)^{2}}\Big|_{\phi_{0}}$$

(日) (日) (日) (日) (日) (日) (日) (日)

xAct

www.xAct.es/

xAct	
Home Packages Download Documentation FAQ Ar	ticles History Links
This page	
> Introduction xAct: Efficient tensor of	omputer algebra for the Wolfram Language
> News José M. Martín-García, GPL 2002-2	016
CopyLeft Main collaborators: Alfonso Garcí Nutma, Thomas Bāckdahl.	a-Parrado, Alessandro Stecchina, Barry Wardell, Cyril Pitrou, David Brizuela, David Yllanes, Guillaume Faye, Leo Stein, Renato Portugal, Teake
Main Packages	
> xCore	
> xPerm xAct is a suite of free packages for t geometric approach to General Relati	ensor computer algebra in <u>Mathematics</u> . xAct implements state-of-the-art algorithms for fast manipulations of indices and has been modelled on the current rity. It is highly programmable and configurable. Since its first public release in March 2004, xAct has been intensively tested and has solved a number of hard
> xTensor problems in GR.	
> xCoba There are four packages acting as a k	ernel for the rest:
Applications • <u>xCores</u> : generic programming to • <u>xCores</u> : manipulation of large g • <u>xCores</u> : assistant tensor compute • <u>xCores</u> : assistant tensor compute • <u>xCores</u> : component tensor comp	de so de permutations tations, the flagship of the system utations
> Harmonics Application packages include:	
> Invar	
 Spinors Spinors Harmonics: tensor spherical ha Invar: polynomial invariants of 	heory in GR monics he Riemann tensor
Contributed • Spinors: spinor computations in	GR
> xPrint Contributed packages:	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Linearized Equations of Motion

•
$$g_{\mu
u} = \eta_{\mu
u} + h_{\mu
u}$$
 and $\phi = \phi_0 + \varphi$

• At the zeroth order: $g_{\mu
u} = \eta_{\mu
u}$ and $\phi = \phi_0$

$$\Rightarrow G_{2(0,0)} = 0, \ G_{2(1,0)} = 0$$

•
$$f_{(m,n)} = \frac{\partial^{m+n} f(\phi, X)}{\partial \phi^m \partial X^n} \Big|_{\phi = \phi_0, X = 0}$$

Linearized EoMs:

$$\Box \tilde{h}_{\mu\nu} = -\frac{T_{\mu\nu}^{(1)}}{G_{4(0,0)}}, \quad (\Box - m_s^2)\varphi = \frac{T_*^{(1)}}{2G_{4(0,0)}\zeta}.$$
$$\tilde{h}_{\mu\nu} = h_{\mu\nu} - \frac{1}{2}\eta_{\mu\nu}h - \frac{G_{4(1,0)}}{G_{4(0,0)}}\eta_{\mu\nu}\varphi$$
$$m_s^2 = -G_{2(2,0)}/\zeta, \quad \zeta = G_{2(0,1)} - 2G_{3(1,0)} + 3G_{4(1,0)}^2/G_{4(0,0)}$$
$$T_*^{(1)} = G_{4(1,0)}T^{(1)} - 2G_{4(0,0)}\left(\frac{\partial T}{\partial \phi}\right)^{(1)}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Effective Stress-energy Tensor

Т

- The methods to obtain the effective stress-energy tensor for GWs: Landau-Lifshitz pseudo-tensor [17], the second variation [18], Noether's theorem [19], *Isaacson* [1, 2]...
- Take the second order Einstein's equation, with the first order equations substituted in
- Take the terms quadratic in $\tilde{h}_{\mu\nu}$ and $\varphi,$ then average their sums over several wavelengths
- Effective Stress-energy Tensor, gauge invariant:

$$\begin{split} & \stackrel{\sim}{\overset{\operatorname{GW}}{\overset{\to}{\mu\nu}}} = \left\langle \overline{\frac{1}{2} G_{4(0,0)} \left(\partial_{\mu} \tilde{h}_{\rho\sigma} \partial_{\nu} \tilde{h}^{\rho\sigma} - \frac{1}{2} \partial_{\mu} \tilde{h} \partial_{\nu} \tilde{h} - \partial_{\mu} \tilde{h}_{\nu\rho} \partial_{\sigma} \tilde{h}^{\sigma\rho} - \partial_{\nu} \tilde{h}_{\mu\rho} \partial_{\sigma} \tilde{h}^{\sigma\rho} \right)} \\ & + \zeta \partial_{\mu} \varphi \partial_{\nu} \varphi \leftarrow \text{the contribution of the scalar field} \\ & + G_{4(1,0)} (m_{s}^{2} \varphi \tilde{h}_{\mu\nu} + \partial_{\mu} \varphi \partial^{\rho} \tilde{h}_{\rho\nu} + \partial_{\nu} \varphi \partial^{\rho} \tilde{h}_{\rho\mu} - \eta_{\mu\nu} \partial_{\sigma} \varphi \partial_{\rho} \tilde{h}^{\rho\sigma}) \right\rangle. \end{split}$$

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

Near Zone Solutions

Figure 36.3, Page 997, MTW [20]

$$\Box \tilde{h}_{\mu\nu} = -\frac{T_{\mu\nu}^{(1)}}{G_{4(0,0)}}, \quad (\Box - m_s^2)\varphi = \frac{T_*^{(1)}}{2G_{4(0,0)}\zeta}.$$

$$\varphi(t, \vec{x}) = \frac{1}{8\pi G_{4(0,0)}\zeta} \sum_a \frac{m_a S_a}{r_a} e^{-m_s r_a}$$

$$h_{00} = \frac{1}{8\pi G_{4(0,0)}} \sum_a \frac{m_a}{r_a} \left(1 + \frac{G_{4(1,0)}}{G_{4(0,0)}\zeta} S_a e^{-m_s r_a}\right),$$

$$h_{jk} = \frac{\delta_{jk}}{8\pi G_{4(0,0)}} \sum_a \frac{m_a}{r_a} \left(1 - \frac{G_{4(1,0)}}{G_{4(0,0)}\zeta} S_a e^{-m_s r_a}\right),$$

$$h_{0j} = 0,$$

$$2G_{4(0,0)}$$

•
$$S_a = G_{4(1,0)} - \frac{2G_{4(0,0)}}{\phi_0} s_a$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Near Zone Solutions

A single mass *M*:

•
$$g_{00} = -1 + 2G_{N}(r)\frac{M}{r} + \cdots$$
,
• "Newton's constant": $G_{N}(r) = \frac{1}{16\pi G_{4(0,0)}} \left(1 + \frac{G_{4(1,0)}}{G_{4(0,0)}\zeta}S_{M}e^{-m_{s}r}\right)$
• $g_{jk} = \delta_{jk} \left(1 + 2\gamma(r)G_{N}(r)\frac{M}{r}\right) + \cdots$,
• "PPN parameter": $\gamma(r) = \frac{G_{4(0,0)}\zeta - G_{4(1,0)}S_{M}e^{-m_{s}r}}{G_{4(0,0)}\zeta + G_{4(1,0)}S_{M}e^{-m_{s}r}}$
 $S_{M} = G_{4(1,0)} - \frac{2G_{4(0,0)}}{\phi_{0}}s_{M}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Nordtvedt Effect

а

- The polarization of the moon's orbit [21, 22, 23, 24]:
- The relative acceleration:

$$egin{aligned} & \dot{f}_{ab} pprox & - rac{m_a + m_b}{16\pi\,G_{4(0,0)}} rac{\dot{f}_{ab}^j}{r_{ab}^2} \left[1 + rac{S_a S_b}{G_{4(0,0)} \zeta} (1 + m_s r_{ab}) e^{-m_s r_{ab}}
ight] \ & - rac{m_c}{16\pi\,G_{4(0,0)}} \left(rac{\dot{f}_{ac}^j}{r_{ac}^2} - rac{\dot{f}_{bc}^j}{r_{bc}^2}
ight) \ & + \left[rac{S_c}{8\pi\,G_{4(0,0)} \phi_0 \zeta} rac{m_c \hat{r}_{ac}^j}{r_{ac}^2} (s_a - s_b) (1 + m_s r_{ac}) e^{-m_s r_{ac}}
ight], \end{aligned}$$

• "Nordtvedt parameter": $\eta_{\rm N} = \frac{S_c}{8\pi G_{4(0,0)}\phi_0\zeta} (1+m_s r_{ac}) e^{-m_s r_{ac}}$

Nordtvedt Effect - Lunar Laser Ranging Exp.'s

• The lunar laser ranging experiment gave [25]

$$\eta_{\mathrm{N}}^{\mathrm{obs.}} = (0.6\pm5.2) imes10^{-4} = \delta\pm\epsilon.$$

•
$$|\eta_{\rm N} - \delta| < 2\epsilon$$
 at 95% confidential level
• $\left| \frac{G_{4(1,0)}(1+m_s r)}{8\pi G_{4(0,0)}\phi_0\zeta} e^{-m_s r} - \delta \right| < 2\epsilon$ at $r = 1$ AU.
• EdGB: $\left| -\frac{s_{\odot}}{4\pi d_0^2} - \delta \right| < 2\epsilon \Rightarrow \phi_0 > 9.01\sqrt{s_{\odot}/G_{\rm N}}$ with $s_{\odot} \lesssim 10^{-4}$

• SSHT (covariant Galileon, Fab Four...) trivially satisfies this constraint since $G_{4(1,0)} = 0$ and $s_a = 0$ [26]

Shapiro Time Delay

• 4 velocity of the photon:
$$u^{\mu} = u^0(1, \vec{v})$$

$$-1+h_{00}+(\delta_{jk}+h_{jk})v^{j}v^{k}=0,$$

•
$$\hat{N} \cdot \frac{\mathrm{d}\delta \vec{x}}{\mathrm{d}t} = -\frac{M}{8\pi G_{4(0,0)}r(t)}$$
 where $r(t) = |\vec{x}(t)|$

• Shapiro time delay [27]:

$$\begin{split} \delta t =& 2 \int_{t_e}^{t_p} \hat{N} \cdot \frac{\mathrm{d}\delta \vec{x}}{\mathrm{d}t} \mathrm{d}t \\ =& 2G_{\mathrm{N}} M_{\mathrm{K}} (1+\gamma(r)) \ln \frac{(r_e + \hat{N} \cdot \vec{x_e})(r_p - \hat{N} \cdot \vec{x_p})}{r_b^2}, \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where $r_e = |\vec{x}_e|$, $r_p = |\vec{x}_p|$ and $r_b = |\hat{N} \times \vec{x}_e|$ is the impact parameter of the photon relative to the source.

Shapiro Time Delay - Cassini Time Delay Data

- In 2002, the Cassini spacecraft measured the Shapiro time delay effect in the solar system by radio tracking [28].
- $\gamma_{
 m meas.} = 1 + (2.1 \pm 2.3) imes 10^{-5} = 1 + \delta \pm \epsilon$
- At 95% C.L., $|\gamma(r) \gamma_{\text{meas.}}| < 2\epsilon$:

$$\frac{G_{4(1,0)}^2}{G_{4(0,0)}\zeta} < \frac{2\epsilon - \delta}{2 + \delta - 2\epsilon} e^{m_s r},$$

at r = 1 AU.

• EdGB and SSHT trivially satisfy this constraint as $G_{4(1,0)} = 0$.

Gravitational Radiation

Energy loss at (massless)

$$\dot{E}\approx-\frac{G_{4(0,0)}}{2}r^{2}\int\left\langle \partial_{0}\tilde{h}_{jk}^{\mathrm{TT}}\partial_{0}\tilde{h}_{\mathrm{TT}}^{jk}\right\rangle \mathrm{d}\Omega-\zeta r^{2}\int\left\langle \partial_{0}\varphi\partial_{0}\varphi\right\rangle \mathrm{d}\Omega$$

• Energy lost through the spin-2 wave:

$$ilde{h}_{jk}(t,\vec{x}) = rac{1}{8\pi G_{4(0,0)}r} rac{\mathrm{d}^2 I_{jk}}{\mathrm{d}t^2} \sim O(v^4),$$

• Effective one-body problem:

$$a^{j}=-rac{arsigma m}{16\pi G_{4(0,0)}}rac{
ho_{12}^{j}}{r_{12}^{2}}$$

with $\varsigma = 1 + \frac{S_1 S_2}{G_{4(0,0)} \zeta}$ and $m = m_1 + m_2$ • $\dot{E}_2 = -(1 - e^2)^{-7/2} \left(1 + \frac{73}{24}e^2 + \frac{37}{96}e^4\right) \frac{32}{5} \frac{\varsigma^3 \mu^2 m^3}{(16\pi G_{4(0,0)})^4 a^5}$ with *e* the eccentricity, *a* the semi-major axis and μ the reduced mass

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Gravitational Radiation

$$\begin{split} \Box \varphi &= \frac{T_*^{(1)}}{2G_{4(0,0)\zeta}} + \frac{G_{4(1,0)}T^{(2)}}{2G_{4(0,0)\zeta}} - \frac{1}{\zeta} \left(\frac{\partial T}{\partial \phi}\right)^{(2)} + \left[\frac{\varphi T_*^{(1)}}{G_{4(0,0)\zeta}} + (\partial_{\mu}\varphi)(\partial^{\mu}\varphi)\right] \left(-\frac{G_{4(1,0)}}{2G_{4(0,0)}}\right) \\ &+ \frac{3G_{4(1,0)}^3}{2G_{4(0,0)\zeta}^2} - \frac{G_{2(1,1)}}{2\zeta} + \frac{G_{3(2,0)}}{\zeta} - 3\frac{G_{4(1,0)}G_{4(2,0)}}{G_{4(0,0)\zeta}}\right) + \frac{G_{4(1,0)}}{G_{4(0,0)}}(\partial_{\mu}\varphi)\partial^{\mu}\varphi - \frac{\tilde{h}T_*^{(1)}}{4G_{4(0,0)\zeta}} \\ &+ \frac{\varphi T^{(1)}}{2G_{4(0,0)\zeta}} \left(G_{4(2,0)} - \frac{G_{4(1,0)}^2}{G_{4(0,0)}}\right) - \varphi^2 \frac{G_{2(3,0)}}{2\zeta} + \\ &\left[\frac{(T_*^{(1)})^2}{4G_{4(0,0)\zeta}^3} - \frac{(\partial_{\mu}\partial_{\nu}\varphi)(\partial^{\mu}\partial^{\nu}\varphi)}{\zeta}\right] \left(G_{3(0,1)} - 3\frac{G_{4(0,1)}G_{4(1,0)}}{G_{4(0,0)}} + 3\frac{G_{4(1,0)}G_{5(1,0)}}{G_{4(0,0)}} - 3G_{4(1,1)}\right) \\ &+ \tilde{h}_{\mu\nu}\partial^{\mu}\partial^{\nu}\varphi + \frac{T_{\mu\nu}^{(1)}\partial^{\mu}\partial^{\nu}\varphi}{G_{4(0,0)\zeta}} (G_{4(0,1)} - G_{5(1,0)}) \Rightarrow O(v^6). \end{split}$$

Gravitational Radiation

$$\varphi = \frac{f_0}{r} + \frac{f_1}{r}(\hat{n} \cdot \vec{v}) + \frac{f_2}{r}(\hat{n} \cdot \vec{v})^2 + \frac{f_3}{r}\frac{(\hat{n} \cdot \vec{r}_{12})^2}{r_{12}^3} + \frac{f_4}{r}v^2 + \frac{f_5}{r_{12}} + f_6\frac{r_{12}}{r}$$

$$\begin{split} f_{0} &= \frac{m_{1}S_{1} + m_{2}S_{2}}{8\pi G_{4(0,0)}\zeta}, \quad f_{1} = -\frac{\mu}{4\pi\phi_{0}\zeta}(s_{1} - s_{2}), \quad f_{2} = \frac{\mu\Gamma}{8\pi G_{4(0,0)}\zeta}, \\ f_{3} &= -\frac{\zeta\mu m\Gamma}{128\pi^{2}G_{4(0,0)}^{2}\zeta}, \quad f_{4} = -\frac{\mu\Gamma}{16\pi G_{4(0,0)}\zeta}, \quad f_{6} = -\frac{\mu mG_{2(3,0)}S_{1}S_{2}}{128\pi^{2}G_{4(0,0)}^{2}\zeta^{3}}, \\ f_{5} &= -\frac{\mu m\Gamma'}{64\pi^{2}G_{4(0,0)}^{2}\zeta} + \frac{\mu m\Gamma'}{32\pi^{2}G_{4(0,0)}^{2}\zeta} \left(G_{4(2,0)} - \frac{G_{4(1,0)}^{2}}{G_{4(0,0)}}\right) + \frac{\mu m}{64\pi^{2}G_{4(0,0)}^{2}\zeta^{2}} \times \\ & \left[\left(\frac{3G_{4(1,0)}^{3}}{2G_{4(0,0)}^{2}} - \frac{G_{2(1,1)}}{2} + G_{3(2,0)} - \frac{3G_{4(1,0)}G_{4(2,0)}}{G_{4(0,0)}}\right) \frac{2S_{1}S_{2}}{\zeta} + \frac{S_{1}'S_{2} + S_{2}'S_{1}}{\phi_{0}} \right], \end{split}$$

and

$$S'_{a} = G_{4(1,0)}s_{a} - \frac{2G_{4(0,0)}}{\phi_{0}}(s_{a}^{2} - s_{a} - s_{a}'),$$

$$\Gamma = G_{4(1,0)} - \frac{2G_{4(0,0)}}{\phi_{0}}\frac{m_{2}s_{1} + m_{1}s_{2}}{m}, \quad \Gamma' = G_{4(1,0)} - \frac{G_{4(0,0)}}{\phi_{0}}(s_{1} + s_{2}).$$

Gravitational Radiation

$$\begin{split} \dot{E}_{0} &= -\left(1-e^{2}\right)^{-7/2} \Bigg\{ \frac{\zeta\varsigma^{3}m^{3}}{120(16\pi)^{2}G_{4(0,0)}^{3}a^{5}} \left[15(e^{2}+4)e^{2}f_{4}^{2}+10(e^{2}+4)e^{2}f_{2}f_{4}\right. \\ &+ \left(6e^{4}+36e^{2}+8\right)f_{2}^{2} \right] + \frac{\zeta\varsigma^{2}m^{2}}{1920\pi G_{4(0,0)}^{2}a^{5}} \left[-5a(1-e^{2})(2+e^{2})f_{1}^{2} \right. \\ &+ \left(3e^{4}+36e^{2}+16\right)f_{2}f_{3}-5(e^{2}+4)e^{2}f_{2}f_{5}+20a^{2}e^{2}(1-e^{2})^{2}f_{2}f_{6} \right. \\ &- 5e^{2}(e^{2}+4)f_{3}f_{4}-15e^{2}(e^{2}+4)f_{4}f_{5}+60a^{2}e^{2}(1-e^{2})^{2}f_{4}f_{6} \right] \\ &+ \frac{\zeta\varsigma m}{480 G_{4(0,0)}a^{5}} \left[(15e^{4}+108e^{2}+32)f_{3}^{2}+15e^{2}(e^{2}+4)f_{5}^{2} \right. \\ &+ 10e^{2}(e^{2}+4)f_{3}f_{5}-120a^{4}(1-1/\sqrt{1-e^{2}})(1-e^{2})^{4}f_{6}^{2} \\ &- 120a^{2}e^{2}(1-e^{2})^{2}f_{5}f_{6}-40a^{2}e^{2}(1-e^{2})^{2}f_{3}f_{6} \right] \Bigg\}. \end{split}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● のへで

vitational Radiation Sun

Gravitational Radiation

$$\begin{split} \frac{\dot{T}}{T} &= -\frac{3}{2} \frac{\dot{E}_{0} + \dot{E}_{2}}{E} \\ &= -\left(1 - e^{2}\right)^{-7/2} \Biggl\{ \left(1 + \frac{73}{24}e^{2} + \frac{37}{96}e^{4}\right) \frac{96}{5} \frac{\zeta^{2}\mu m^{2}}{(16\pi G_{4(0,0)})^{3}a^{4}} \\ &+ \frac{\zeta \zeta^{2}m^{2}}{640\pi\mu G_{4(0,0)}^{2}a^{4}} \Biggl[15(e^{2} + 4)e^{2}f_{4}^{2} + 10(e^{2} + 4)e^{2}f_{2}f_{4} \\ &+ (6e^{4} + 36e^{2} + 8)f_{2}^{2} \Biggr] + \frac{\zeta \varsigma m}{40\mu G_{4(0,0)}a^{4}} \Biggl[-5a(1 - e^{2})(2 + e^{2})f_{1}^{2} \\ &+ (3e^{4} + 36e^{2} + 16)f_{2}f_{3} - 5(e^{2} + 4)e^{2}f_{2}f_{5} + 20a^{2}e^{2}(1 - e^{2})^{2}f_{2}f_{6} \\ &- 5e^{2}(e^{2} + 4)f_{3}f_{4} - 15e^{2}(e^{2} + 4)f_{4}f_{5} + 60a^{2}e^{2}(1 - e^{2})^{2}f_{4}f_{6} \Biggr] \\ &+ \frac{\pi\zeta}{10\mu a^{4}} \Biggl[(15e^{4} + 108e^{2} + 32)f_{3}^{2} + 15e^{2}(e^{2} + 4)f_{5}^{2} \\ &+ 10e^{2}(e^{2} + 4)f_{3}f_{5} - 120a^{4}(1 - 1/\sqrt{1 - e^{2}})(1 - e^{2})^{4}f_{6}^{2} \\ &- 120a^{2}e^{2}(1 - e^{2})^{2}f_{5}f_{6} - 40a^{2}e^{2}(1 - e^{2})^{2}f_{3}f_{6} \Biggr] \Biggr\}, \end{split}$$

SAC

Gravitational Radiation

A binary system, in circular motion:

•
$$\dot{E}_2 = -\frac{32}{5} \frac{\varsigma^3 \mu^2 m^3}{(16\pi G_{4(0,0)})^4 r_{12}^5}$$
, r_{12} = distance between two stars
• $\dot{E}_0 = -\frac{1}{12\pi} \frac{\varsigma^2 \mu^2 m^2 (s_1 - s_2)^2}{(16\pi G_{4(0,0)})^2 \phi_0^2 \zeta r_{12}^4} - \frac{16}{15} \frac{\varsigma^3 \mu^2 m^3 \Gamma^2}{(16\pi)^4 G_{4(0,0)}^5 \zeta r_{12}^5}$

• The fractional period derivative is

$$\frac{\dot{T}}{T} = -\frac{\varsigma\mu m (s_1 - s_2)^2}{64\pi^2 G_{4(0,0)} \phi_0^2 \zeta r_{12}^3} - \frac{16}{5} \frac{\varsigma^2 \mu m^2 \Gamma^2}{(16\pi)^3 G_{4(0,0)}^4 \zeta r_{12}^4} - \frac{96}{5} \frac{\varsigma^2 \mu m^2}{(16\pi G_{4(0,0)})^3 r_{12}^4}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Gravitational Radiation

- $|\dot{T}_{\rm pred.} \dot{T}_{\rm obs.}| < 2\sigma$ at 95% C.L. with σ the uncertainty in $T_{\rm obs.}$
- PSR J1738+0333 [29]:

Eccentricity e	$(3.4 \pm 1.1) imes 10^{-7}$
Orbital period T (days)	0.354 790 739 8724(13)
Period derivative $\dot{T}_{\sf obs}$	$(-25.9\pm3.2) imes10^{-15}$
Pulsar mass $m_1(M_{\odot})$	$1.46^{+0.06}_{-0.05}$
Companion mass $m_2(M_{\odot})$	$0.181\substack{+0.008\\-0.007}$

• EdGB:
$$S = \int d^4x \sqrt{-g} [R/2 + X + \xi(\phi)G]$$
 with $G = R^2 - 4R_{\mu\nu}R^{\mu\nu} + R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma}$

$$\phi_0 > 29.8/\sqrt{G_{\rm N}}$$

• SSHT: $G_i = G_i(X)$, i = 2, 3, 4, 5. E.g., covariant Galileon, Fab Four

$$3.00 imes 10^{-10}/{\it G_{
m N}} < {\it G_4(0)} < 4.07 imes 10^{-10}/{\it G_{
m N}}$$

with $G_4(0) = G_4|_{X=0}$

Horndeski Theory	Effective Stress-energy Tensor	Near Zone Solutions	Gravitational Radiation	

Summary

- Effective stress-energy tensor
- Nordtvedt effect: $\left|\frac{G_{4(1,0)}(1+m_s r)}{8\pi G_{4(0,0)}\phi_0\zeta}e^{-m_s r}-\delta\right| < 2\epsilon$ • Shapiro time delay: $\frac{G_{4(1,0)}^2}{G_{4(0,0)}\zeta} < \frac{2\epsilon-\delta}{2+\delta-2\epsilon}e^{m_s r}$

• EdGB:
$$\phi_0 > 29.8 / \sqrt{G_N}$$

• SSHT: $3.00 \times 10^{-10}/{\it G_{\rm N}} < {\it G_4(0)} < 4.07 \times 10^{-10}/{\it G_{\rm N}}$

Richard A. Isaacson

Gravitational Radiation in the Limit of High Frequency. I. The Linear Approximation and Geometrical Optics.

Phys. Rev., 166:1263-1271, 1967.

Richard A. Isaacson

Gravitational Radiation in the Limit of High Frequency. II. Nonlinear Terms and the Ef fective Stress Tensor.

Phys. Rev., 166:1272-1279, 1968.

B. P. Abbott et al.

Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A.

Astrophys. J., 848(2):L13, 2017.

Paolo Creminelli and Filippo Vernizzi. Dark Energy after GW170817. 2017

Jose María Ezquiaga and Miguel Zumalacárregui. Dark Energy after GW170817. 2017

Shun Arai and Atsushi Nishizawa.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Generalized framework for testing gravity with gravitational-wave propagation. II. Constraints on Horndeski theory. 2017.

Jeremy Sakstein and Bhuvnesh Jain.

Implications of the Neutron Star Merger GW170817 for Cosmological Scalar-Tensor Theories.

2017.

- Yungui Gong, Eleftherios Papantonopoulos, and Zhu Yi.
- Constraints on Scalar-Tensor Theory of Gravity by the Recent Observational Results on Gravitational Waves.
- 2017.
- - Marco Crisostomi and Kazuya Koyama.
 - Vainshtein mechanism after GW170817.

2017.

Clifford M. Will.

The Confrontation between General Relativity and Experiment.

Living Rev. Rel., 17:4, 2014.

Gaetano Lambiase, Mairi Sakellariadou, Arturo Stabile, and Antonio Stabile.

Astrophysical constraints on extended gravity models.

JCAP, 1507(07):003, 2015.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Sourav Bhattacharya and Sumanta Chakraborty. Constraining some Horndeski gravity theories. *Phys. Rev. D*, 95(4):044037, 2017.

Indrani Banerjee, Sumanta Chakraborty, and Soumitra SenGupta. Excavating black hole continuum spectrum: Possible signatures of scalar hairs and of higher dimensions.

Phys. Rev. D, 96(8):084035, 2017.

Lijing Shao, Noah Sennett, Alessandra Buonanno, Michael Kramer, and Norbert Wex.

Constraining nonperturbative strong-field effects in scalar-tensor gravity by combining pulsar timing and laser-interferometer gravitational-wave detectors.

Phys. Rev. X, 7(4):041025, 2017.

Tsutomu Kobayashi, Masahide Yamaguchi, and Ju'ichi Yokoyama. Generalized G-inflation: Inflation with the most general second-order field equations.

Prog. Theor. Phys., 126:511-529, 2011.

D. M. Eardley.

Observable effects of a scalar gravitational field in a binary pulsar. *Astrophys. J.*, 196:L59–L62, March 1975.

L.D. Landau and E.M. Lifshitz.

volume 2 of *Course of Theoretical Physics*. Pergamon, Amsterdam, fourth edition, 1975.

Malcolm A. H. MacCallum and A. H. Taub. The averaged lagrangian and high-frequency gravitational waves. *Commun. Math. Phys.*, 30:153–169, 1973.

E. Noether.

Invariant variation problems.

Transport Theory and Statistical Physics, 1:186–207, January 1971.

Charles W Misner, Kip S Thorne, and John Archibald Wheeler. *Gravitation*. San Francisco, W.H. Freeman, 1973.

Kenneth Nordtvedt.

Equivalence Principle for Massive Bodies. 1. Phenomenology. *Phys. Rev.*, 169:1014–1016, 1968.

Kenneth Nordtvedt.

Equivalence Principle for Massive Bodies. 2. Theory. *Phys. Rev.*, 169:1017–1025, 1968.

K. Nordtvedt.

The fourth test of general relativity.

Rep. Prog. Phys., 45(6):631, 1982.

C. M. Will.

Theory and experiment in gravitational physics. Cambridge, UK: Univ. Pr. (1993) 380 p, 1993.

- F. Hofmann, J. Müller, and L. Biskupek.
- Lunar laser ranging test of the nordtvedt parameter and a possible variation in the gravitational constant.

Astron. Astrophys., 522:L5, 2010.

E. Barausse and K. Yagi.

Gravitation-Wave Emission in Shift-Symmetric Horndeski Theories. *Phys. Rev. Lett.*, 115(21):211105, 2015.

Irwin I. Shapiro.

Fourth Test of General Relativity. *Phys. Rev. Lett.*, 13:789–791, 1964.

B. Bertotti, L. less, and P. Tortora.

A test of general relativity using radio links with the cassini spacecraft. *Nature*, 425(6956):374–376, 2003.

Paulo C. C. Freire et al.

The relativistic pulsar-white dwarf binary PSR J1738+0333 II. The most stringent test of scalar-tensor gravity.

Mon. Not. Roy. Astron. Soc., 423:3328, 2012.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●