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Binary neutron star mergers
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- gravitational wave sources

- origin of short y-ray bursts

- origin of heavy elements

(the r-process)— kilonovae gy (p lgfem® 1)
[From L. Rezzolla]

finally confirmed by the recent detection of GW170817/GRB 170817A /AT2017gfo
expected to see 2 10 per year at full advanced LIGO sensitivity



Neutrinos and kilonovae early kilonova optical spectrum
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'. **See Fujibayashi+ 2017 for larger amount of high Y, ejecta
[MRW, Tamborra, Just, Janka, arXiv: 1711.00477] in the polar region due to the viscous effect in the HMNS**



Neutrino masses and mixing
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Neutrino oscillations in vacuum and in the solar interior well-understood, but not
inside the astrophysical system where neutrinos are abundantly present...



Neutrinos from NS merger remnant TS INVLRVRY

due to the initial neutron richness, y L U.-"'Rh \
and the self-regulating semi-degeneracy,
neutrino emission go through the phase
of “protonization”.

# = v absorption

accretion disc hot HMNS \

— dominant 7, emission compared to v,. v-driven wind

Table III. Emission parameters with vy € {v,,vr, v, 07 }.

(E,) M&V] T, = £23(E,) MeV] (L, /10°) [erg/s]
ve 106 3.4 15
ve 153 1.9 30
ve 173 5.5 8

[Perego+ MNRAS, 443 (2014) 3134]

— need to understand better their flavor oscillations



Neutrino oscillations in neutrino-dense environment

In the regime where neutrinos nearly free-stream

/
Equation of Motion: (3, + v - 8y)o(x. p, t) = —i[H(x,p. 1), o(x, p. )] + ﬂg)
Jve Oep  Oer
0: Wigner-transformed flavor density matrix, = Q:M f,,u Our

‘QZT ‘QZT fI/’T

H(x,p,t) D >, (o(x,p",t) — 0" (x,p",1))(1 — v - v') — non-linear coupling

[Fuller+ 1987, Pantaleone 1992, Sigl & Raffelt, 1992]

astrophysical sources

V...

. 1 2] - - 6m2
— many—body qua.mtum s.yste.m in stron.g coupllpg regime (Grn, 5B ),
leading to “collective” oscillations, extensively studied in the context of
core-collapse supernovae [Duan+, Raffelt+, Mirizzi+, Volpe+, Balantekin+, Qian+, MRW+, Tamborra+, Lisi+,...]



Neutrino oscillations in neutrino-dense environment

EoM: (0; + v - 0x)o(x,p,t) = —i|H(x,p, 1), o(X, p, t)]
H(x,p,t) O > (o, p’,t)— 0" (x,p’,t))(1 — v -v’') = non-linear coupling
Solving the full EoM is cubersome, but one can linearize the EoM and

analyze locally how the plane-wave (Fourier) mode of the off-diagonal term
in o evolves in linear regime. [lzaguirre+ 2017, Capozzi+ 2017]



Neutrino oscillations in neutrino-dense environment

EoM: (0; + v - Ox)o(x,p,t) =

H(x,p,t) D) . (o(x,p',1)

Solving the full EoM is cubersome, but one can linearize the EoM and
analyze locally how the plane-wave (Fourier) mode of the off-diagonal term
in o evolves in linear regime. [izaguirre+ 2017, Capozzi+ 2017]

_i[H(Xa P, t)v Q(X7 P, t)]
— 0*(x,p’,1))(1 — v -Vv') — non-linear coupling

Complex frequency solution in the dispersion relation of the plane-wave
leads to flavor conversion

< “flavor instability”
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[lzaguirre+, PRL 118, 021101 (2017) ]

“fast” conversion can happen extremely close
to the v surfaces, provided that local angular
distribution of neutrino lepton number has a
“crossing” (more v, than v, in some solid
angle range, while more v, than v, in other
range)

[Sawyer+ 2005, 2009, 2016, |zaguirre+ 2016-17, Dasgupta+ 2016 ]



Neutrino oscillations in neutrino-dense environment

1/(1—b
The local angular crossing in the neutrino lepton 1 +{g

number leads to flavor instability of time scale

T <Sp~t = (v/2Gpn, )™, which implies an oscillation
length scale of ~ centimeters! 0 b 1 cos 0
[Sawyer+ 2005, 2009, 2016, Izaguirre+ 2016-17, Dasgupta+ 2016-17... ]
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ool a=0.1,b=0.3
0.0d 2 4 6 8 0 [Dasgupta+ JCAP 1702, 019 (2017]

- very different from the typical “slow” collective neutrino oscillations studied ex-
tensively during the past decade in core-collapse supernovae.

- whether supernovae can provide such a condition remain uncertain as the
proto-neutron star deleptonizes (neutronizes)



Fast v oscillations in merger remnants — parametrized model

Why is this particularly revelant for merger remnants?

Becuse they protonize, i.e., more ¥, emission than v, [Foucart Peregot, Jankat,. ]
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naturally leads to crossing in angular
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[MRW & Tamborra, PRD 95, 103007, 2017]



Fast v oscillations in merger remnants — parametrized model

Lns,/Ln,, =135, Ry, =0.75R,,, h,, /Ry,. = hs, /Ry, = 0.25, k = 0.

[MRW & Tamborra, PRD 95, 103007, 2017]
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- does the picture remain beyond the parametrized model?
- impact on nucleosynthesis and the kilonova EM observables?



Fast v oscillations in merger remnants — realistic BH-disk model

%
— a BH-disk system with NcT)
BM@ BH, OBM@ diSk, mg
xBH = 0.8 Tﬂ
-

2

— axial-symmetric hydrodynamic
simulation with detailed

neutrino transport
[Just+, MNRAS 448 (2015) 541]

— protonization during the
neutrino emission phase,
particularly at earlier time
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[MRW, Tamborra, Just, Janka, arXiv: 1711.00477]



Fast v oscillations in merger remnants — realistic BH-disk model
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[MRW, Tamborra, Just, Janka, arXiv: 1711.00477]



Fast v oscillations in merger remnants — realistic BH-disk model
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Fast v oscillations in merger remnants — realistic BH-disk model
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[MRW, Tamborra, Just, Janka, arXiv: 1711.00477]



Summary

e Recent electromagnetic follow-up kilonova observation of GW170817 suggests
important role of neutrinos in the binary neutron star mergers.

e In a merger system, condition for fast neutrino flavor oscillations — a conse-
quence of “strong” coupling among neutrinos — to occur is favored, due to
the protonization of the remnant.

e The nucleosynthesis outcome and the kilonova color may be affected by fast
oscillations. Further work in NS—disk system and detailed numerical modeling
in the non-linear regime is needed to clarify this issue and to have reliable
interpretation of the observation.



