Neutrino flavor conversion in binary neutron star mergers

MRW, I. Tamborra, 1701.06580

MRW, I. Tamborra, O. Just, H.-T. Janka, 1711.00477

Meng-Ru Wu (Institute of Physics, Academia Sinica)

International Symposium on Cosmology and Particle Astrophysics, CosPA 2017 YITP, Kyoto, Japan, Dec 11–15, 2017

Binary neutron star mergers

- gravitational wave sources
- origin of short γ -ray bursts
- origin of heavy elements (the r-process) \rightarrow kilonovae

finally confirmed by the recent detection of GW170817/GRB 170817A/AT2017gfo expected to see $\gtrsim 10$ per year at full advanced LIGO sensitivity

Neutrinos and kilonovae

higher proton-to-neutron ratio

 \leftrightarrow more f-shell elements (Lanthanides)

jet

BH

or MNS)

→ bluer photon spectrum

early kilonova optical spectrum

 ν – driven blue kilonova

visc $M_{vis} \sim 10^{-2} M_{\odot}$

torus

 $M_{\nu} \sim 10^{-3} M_{\odot}$ $v_{\nu} \sim 0.1c$

 $v_{
m vis} \sim 0.05c$ red kilonova

dyn

 $M_{\rm dyn} \sim 10^{-2} M_{\odot}$ $v_{\rm dyn} \sim 0.2 c$

red kilonova

$$\nu_e + n \to p + e^-$$

 $\bar{\nu}_e + p \to n + e^+$

neutrinos raise the proton-to-neutron ratio

See Fujibayashi+ 2017 for larger amount of high Y_e ejecta in the polar region due to the viscous effect in the HMNS

[MRW, Tamborra, Just, Janka, arXiv: 1711.00477]

Neutrino masses and mixing

Neutrino oscillations in vacuum and in the solar interior well-understood, but not inside the astrophysical system where neutrinos are abundantly present...

Neutrinos from NS merger remnant

due to the initial neutron richness, and the self-regulating semi-degeneracy, neutrino emission go through the phase of "protonization".

cy, se $\frac{\text{viscous}}{\text{evaporation}}$ $\frac{\text{volution}}{\text{volution}}$ $\frac{\text{volution}}{\text{odisc}}$ $\frac{\text{disc}}{\text{Hdisc}}$ $\frac{\text{Hdisc}}{\text{volution}}$ accretion disc hot HMNS $\frac{\text{volution}}{\text{volution}}$

ightarrow dominant $\bar{\nu}_e$ emission compared to ν_e .

Table III. Emission parameters with $\nu_x \in \{\nu_\mu, \nu_\tau, \bar{\nu}_\mu, \bar{\nu}_\tau\}$.

	$\langle E_{\nu} \rangle \; [{\rm MeV}]$	$T_{\nu} = \frac{F_2(0)}{F_3(0)} \langle E_{\nu} \rangle \text{ [MeV]}$	$(L_{\nu}/10^{51}) [{\rm erg/s}]$
ν_e	10.6	3.4	15
$\bar{ u}_e$	15.3	4.9	30
ν_x	17.3	5.5	8

[Perego+ MNRAS, 443 (2014) 3134]

→ need to understand better their flavor oscillations

In the regime where neutrinos nearly free-stream

Equation of Motion:
$$(\partial_t + \mathbf{v} \cdot \partial_{\mathbf{x}})\varrho(\mathbf{x}, \mathbf{p}, t) = -i[H(\mathbf{x}, \mathbf{p}, t), \varrho(\mathbf{x}, \mathbf{p}, t)] + \varrho(\varrho)$$

$$arrho$$
: Wigner-transformed flavor density matrix, $= \left(egin{array}{ccc} f_{
u_e} & arrho_{e\mu} & arrho_{e au} \\ arrho_{e\mu}^* & f_{
u_{\mu}} & arrho_{\mu au} \\ arrho_{e au}^* & arrho_{\mu au}^* & f_{
u_{ au}} \end{array}
ight)$

$$H(\mathbf{x}, \mathbf{p}, t) \supset \sum_{\mathbf{p}'} (\varrho(\mathbf{x}, \mathbf{p}', t) - \bar{\varrho}^*(\mathbf{x}, \mathbf{p}', t))(1 - \mathbf{v} \cdot \mathbf{v}') \to \text{non-linear coupling}$$

[Fuller+ 1987, Pantaleone 1992, Sigl & Raffelt, 1992]

ightarrow many-body quamtum system in "strong" coupling regime $(G_F n_{\nu} \gg \frac{\delta m^2}{2E_{\nu}})$, leading to "collective" oscillations, extensively studied in the context of core-collapse supernovae [Duan+, Raffelt+, Mirizzi+, Volpe+, Balantekin+, Qian+, MRW+, Tamborra+, Lisi+,...]

EoM:
$$(\partial_t + \mathbf{v} \cdot \partial_{\mathbf{x}})\varrho(\mathbf{x}, \mathbf{p}, t) = -i[H(\mathbf{x}, \mathbf{p}, t), \varrho(\mathbf{x}, \mathbf{p}, t)]$$

 $H(\mathbf{x}, \mathbf{p}, t) \supset \sum_{\mathbf{p}'} (\varrho(\mathbf{x}, \mathbf{p}', t) - \bar{\varrho}^*(\mathbf{x}, \mathbf{p}', t))(1 - \mathbf{v} \cdot \mathbf{v}') \to \text{non-linear coupling}$

Solving the full EoM is cubersome, but one can linearize the EoM and analyze locally how the plane-wave (Fourier) mode of the off-diagonal term in ϱ evolves in linear regime. [Izaguirre+ 2017, Capozzi+ 2017]

EoM:
$$(\partial_t + \mathbf{v} \cdot \partial_{\mathbf{x}})\varrho(\mathbf{x}, \mathbf{p}, t) = -i[H(\mathbf{x}, \mathbf{p}, t), \varrho(\mathbf{x}, \mathbf{p}, t)]$$

 $H(\mathbf{x}, \mathbf{p}, t) \supset \sum_{\mathbf{p}'} (\varrho(\mathbf{x}, \mathbf{p}', t) - \bar{\varrho}^*(\mathbf{x}, \mathbf{p}', t))(1 - \mathbf{v} \cdot \mathbf{v}') \to \text{non-linear coupling}$

Solving the full EoM is cubersome, but one can linearize the EoM and analyze locally how the plane-wave (Fourier) mode of the off-diagonal term in ϱ evolves in linear regime. [Izaguirre+ 2017, Capozzi+ 2017]

Complex frequency solution in the dispersion relation of the plane-wave ↔ "flavor instability" leads to flavor conversion

"fast" conversion can happen extremely close to the ν surfaces, provided that local angular distribution of neutrino lepton number has a "crossing" (more $\bar{\nu}_e$ than ν_e in some solid angle range, while more ν_e than $\bar{\nu}_e$ in other range)

[Sawyer+ 2005, 2009, 2016, Izaguirre+ 2016-17, Dasgupta+ 2016]

[Izaguirre+, PRL 118, 021101 (2017)]

The local angular crossing in the neutrino lepton number leads to flavor instability of time scale $\tau \lesssim \mu^{-1} = (\sqrt{2}G_F n_\nu)^{-1}$, which implies an oscillation length scale of \sim centimeters!

[Sawyer+ 2005, 2009, 2016, Izaguirre+ 2016-17, Dasgupta+ 2016-17...]

- very different from the typical "slow" collective neutrino oscillations studied extensively during the past decade in core-collapse supernovae.
- whether supernovae can provide such a condition remain uncertain as the proto-neutron star deleptonizes (neutronizes)

Fast ν oscillations in merger remnants – parametrized model

Why is this particularly revelant for merger remnants?

Becuse they protonize, i.e., more $\bar{\nu}_e$ emission than ν_e [Foucart+, Perego+, Janka+,...]

[MRW & Tamborra, PRD 95, 103007, 2017]

Fast ν oscillations in merger remnants – parametrized model

$$L_{n,\bar{\nu}_e}/L_{n,\nu_e} = 1.35, R_{\bar{\nu}_e} = 0.75R_{\nu_e}, h_{\nu_e}/R_{\nu_e} = h_{\bar{\nu}_e}/R_{\bar{\nu}_e} = 0.25, \vec{k} = 0.$$

[MRW & Tamborra, PRD 95, 103007, 2017]

 $Im(\omega)$: growth rate of flavor mixing in the linear regime

$$\mu_0 \approx 4.25 \text{ cm}^{-1} \times$$

$$\left(\frac{L_{\nu_e}}{10^{53} \text{erg/s}}\right) \left(\frac{10 \text{MeV}}{\langle E_{\nu_e} \rangle}\right) \left(\frac{100 \text{km}}{R_{\nu_e}}\right)^2$$

fast flavor conversion condition exists everywhere above the remnant, with any reasonable parameters

Matter-neutrino resonances [McLaughlin+, MRW+,...]

- does the picture remain beyond the parametrized model?
- impact on nucleosynthesis and the kilonova EM observables?

a BH-disk system with $3M_{\odot}$ BH, $0.3M_{\odot}$ disk,

3H = 0.8- axial-symmetric hydrodynamic wilation with detailed ansport $\frac{18}{14}$

- protonization during the neutrino emission phase, particularly at earlier time

[MRW, Tamborra, Just, Janka, arXiv: 1711.00477]

- again, flavor instability seeding fast conversion found above the remnant
- region of flavor instability changes as the system evolves, still large enough to affect most neutrinos influencing the ejecta

- again, flavor instability seeding fast conversion found above the remnant
- region of flavor instability changes as the system evolves, still large enough to affect most neutrinos influencing the ejecta

- again, flavor instability seeding fast conversion found above the remnant
- region of flavor instability changes as the system evolves, still large enough to affect most neutrinos influencing the ejecta
- assuming fast conversions lead to full flavor equipartition

Summary

- Recent electromagnetic follow-up kilonova observation of GW170817 suggests important role of neutrinos in the binary neutron star mergers.
- In a merger system, condition for fast neutrino flavor oscillations a consequence of "strong" coupling among neutrinos to occur is favored, due to the protonization of the remnant.
- The nucleosynthesis outcome and the kilonova color may be affected by fast oscillations. Further work in NS—disk system and detailed numerical modeling in the non-linear regime is needed to clarify this issue and to have reliable interpretation of the observation.