Antler Topology and Missing Mass Determination at Lepton Collider

CosPA 2017

Zhuoni Qian (Kyoto, Dec 13, 2017)

기초과학연구원
Institute for Basic Science
N. Christensen, Tao Han, J. Sayre, J. Song, Stefanus, ZQ, Phys. Rev. D 90, 114029 (2014)

Contents

1. Antler Process: Pair Resonance decay
2. Cusps and Endpoints
3. Twin peaks and Polarized Beams
4. Realistic Effects and Mass Determination

$3 / 17$

DM Searches and Measurements

1.Searches continue for particle DM, in Direct detection, indirect evidence, and collider experiments, until we find something, somewhere.
2. Once we see signals from multiple sources, it's important to determine the properties of the observed state(s). e.g. Mass precisely, if there are (nearly) degenerate states in the spectrum
3. Lepton collider with sufficient vs will still be the optimal machine

Antler Topology at $e^{-} e^{+}$Collider

$$
\begin{aligned}
& B^{+} e^{-} \rightarrow B_{1}+B_{2}, \\
& B_{1} \rightarrow a_{1}+X_{1}, \quad B_{2} \rightarrow a_{2}+X_{2}
\end{aligned}
$$

Symmetric Case:

$$
m_{B_{1}}=m_{B_{2}} \equiv m_{B}, \quad m_{X_{1}}=m_{X_{2}}=m_{X} .
$$

Cusps and Endpoints

- Singular kinematic structures: cusps and endpoints in distributions of (c.m. frame of a1, a2)

$$
m_{a a}, m_{\mathrm{rec}}, \cos \Theta, E_{a}, E_{a a}
$$

1D configuration				$m_{a a}$	$m_{\text {rec }}$	$E_{a a}$	$E_{X X}$
(i) $\stackrel{a_{2}}{\rightleftharpoons}$	$\stackrel{B_{2}}{\leftarrow}$		$\xrightarrow{a_{1}}$	max	min	max	min
$(i i) \stackrel{a_{2}}{\Longrightarrow}$	$\stackrel{B_{2}}{\rightleftarrows}$	$\xrightarrow{B_{1}}$	$\stackrel{a_{1}}{a_{1}}$	cusp	max	min	max
(iii) $\stackrel{a_{2}}{\longrightarrow}$	$\stackrel{B_{2}}{\leftrightarrows}$		$\xrightarrow{a_{1}}$	min	cusp	cusp	cusp
(iv) $\stackrel{a_{2}}{\rightleftharpoons}$	$\stackrel{B_{2}}{\stackrel{1}{4}}$	$\xrightarrow{B_{1}}$	$\stackrel{a_{1}}{a_{1}}$	min	cusp	cusp	cusp

Cusps and Endpoints

- Massive and Massless `a` case.

$$
\begin{aligned}
m_{a a}^{\min } & =0 \\
m_{a a}^{\text {cusp }} & =m_{B}\left(1-\frac{m_{X}^{2}}{m_{B}^{2}}\right) e^{-\eta_{B}} \\
m_{a a}^{\max } & =m_{B}\left(1-\frac{m_{X}^{2}}{m_{B}^{2}}\right) e^{\eta_{B}}
\end{aligned}
$$

	$\mathcal{R}_{1}: \eta_{B}<\frac{\eta_{a}}{2}$	$\mathcal{R}_{2}: \frac{\eta_{a}}{2}<\eta_{B}<\eta_{a}$	$\mathcal{R}_{3}: \eta_{a}<\eta_{B}$
$m_{a a}^{\min }$	$2 m_{a}$		
$m_{a a}^{\text {cusp }}$	$2 m_{a} \cosh \left(\eta_{B}-\eta_{a}\right)$	$2 m_{a} \cosh \left(\eta_{B}-\eta_{a}\right)$	
$m_{a a}^{\max }$	$2 m_{a} \cosh \eta_{B}$		

η_{B} : rapidity of B in the c.m. frame
η_{a} : rapidity of a in the B rest frame
http://www.sps.ch/en/articles/nobel-prizes/the-2013-nobel-prize-in-physics/

Cusps and Endpoints

Benchmark scenario from MSSM, vs $=500 \mathrm{GeV}$

Label	$\tilde{\mu}_{R}$	$\tilde{\mu}_{L}$	$\tilde{\chi}_{1}^{0}$	$\tilde{\chi}_{2}^{0}$	$\tilde{\chi}_{3}^{0}$	$\tilde{\chi}_{4}^{0}$	$\tilde{\chi}_{1}^{ \pm}$	$\tilde{\chi}_{2}^{ \pm}$
Case-A (Case-B)	158	$636(170)$	141	529	654	679	529	679
Case-C	-	-	139	235	504	529	235	515

* SUSY spectra chosen, while preferring the interested antler process of the study, or dominating over other SUSY processes.

Cusps and Endpoints

\sqrt{s}	500 GeV		
Production channel	$\tilde{\mu}_{R} \tilde{\mu}_{R}$	$\tilde{\mu}_{L} \tilde{\mu}_{L}$	$W^{+} W^{-}$
input $\left(m_{B}, m_{X}\right)$	$(158,141)$	$(170,141)$	$\left(m_{W}, 0\right)$
$\|\cos \Theta\|_{\max }$	0.77	0.73	0.95
$\left(m_{\mu \mu}^{\min }, m_{\mu \mu}^{\text {cusp }}, m_{\mu \mu}^{\max }\right)$	$(0,12,91)$	$(0,21,137)$	$(0,13,487)$
$\left(m_{\mathrm{rec}}^{\min }, m_{\mathrm{rec}}^{\text {cusp }}, m_{\mathrm{rec}}^{\max }\right)$	$(408,445,488)$	$(363,413,479)$	$(0,13,487)$
$\left(E_{\mu}^{\min }, E_{\mu}^{\max }\right)$	$(6,46)$	$(11,69)$	$(7,243)$
$\left(E_{\mu \mu}^{\min }, E_{\mu \mu}^{\text {cusp }}, E_{\mu \mu}^{\max }\right)$	$(12,52,92)$	$(21,79,137)$	$(13,250,487)$

realistic effects: spin correlation, acceptance cuts, detector etc.

Cusps and Endpoints

\sqrt{s}	500 GeV		
Production channel	$\tilde{\mu}_{R} \tilde{\mu}_{R}$	$\tilde{\mu}_{L} \tilde{\mu}_{L}$	$W^{+} W^{-}$
input $\left(m_{B}, m_{X}\right)$	$(158,141)$	$(170,141)$	$\left(m_{W}, 0\right)$
$\|\cos \Theta\|_{\max }$	0.77	0.73	0.95
$\left(m_{\mu \mu}^{\min }, m_{\mu \mu}^{\text {cusp }}, m_{\mu \mu}^{\max }\right)$	$(0,12,91)$	$(0,21,137)$	$(0,13,487)$
$\left(m_{\mathrm{rec}}^{\min }, m_{\mathrm{rec}}^{\text {cusp }}, m_{\mathrm{rec}}^{\max }\right)$	$(408,445,488)$	$(363,413,479)$	$(0,13,487)$
$\left(E_{\mu}^{\min }, E_{\mu}^{\max }\right)$	$(6,46)$	$(11,69)$	$(7,243)$
$\left(E_{\mu \mu}^{\min }, E_{\mu \mu}^{\text {cusp }}, E_{\mu \mu}^{\max }\right)$	$(12,52,92)$	$(21,79,137)$	$(13,250,487)$

realistic effects: spin correlation, acceptance cuts, detector etc. modify shape

Cusps and Endpoints

\sqrt{s}	500 GeV		
Production channel	$\tilde{\mu}_{R} \tilde{\mu}_{R}$	$\tilde{\mu}_{L} \tilde{\mu}_{L}$	$W^{+} W^{-}$
input $\left(m_{B}, m_{X}\right)$	$(158,141)$	$(170,141)$	$\left(m_{W}, 0\right)$
$\|\cos \Theta\|_{\max }$	0.77	0.73	0.95
$\left(m_{\mu \mu}^{\min }, m_{\mu \mu}^{\text {cusp }}, m_{\mu \mu}^{\max }\right)$	$(0,12,91)$	$(0,21,137)$	$(0,13,487)$
$\left(m_{\mathrm{rec}}^{\min }, m_{\mathrm{rec}}^{\text {cusp }}, m_{\mathrm{rec}}^{\max }\right)$	$(408,445,488)$	$(363,413,479)$	$(0,13,487)$
$\left(E_{\mu}^{\min }, E_{\mu}^{\max }\right)$	$(6,46)$	$(11,69)$	$(7,243)$
$\left(E_{\mu \mu}^{\min }, E_{\mu \mu}^{\text {cusp }}, E_{\mu \mu}^{\max }\right)$	$(12,52,92)$	$(21,79,137)$	$(13,250,487)$

realistic effects: spin correlation, acceptance cuts, detector etc.
modify shape shift disc. points

$9 / 17$

Case-A: $\tilde{\mu}_{R} \tilde{\mu}_{R}$ pair production

Basic cuts:

$9 / 17$

Case-A: $\tilde{\mu}_{R} \tilde{\mu}_{R}$ pair production

shift end points

$9 / 17$

Case-A: $\tilde{\mu}_{R} \tilde{\mu}_{R}$ pair production

shift end points

$$
\text { Case-A: } \tilde{\mu}_{R} \tilde{\mu}_{R} \text { pair production }
$$

Realistic effects:

- spin correlation
- acceptance cuts - detector effects
- ISR,

Beamstrahlung etc.

Case-B: production of $\tilde{\mu}_{R} \tilde{\mu}_{R}$ and $\tilde{\mu}_{L} \tilde{\mu}_{L}$ Similar masses Similar left/right-chiral couplings $\tilde{\mu}_{L} \tilde{\mu}_{L} Z \& \tilde{\mu}_{R} \tilde{\mu}_{R} Z$ Compatible cross section

Case-B: production of $\tilde{\mu}_{R} \tilde{\mu}_{R}$ and $\tilde{\mu}_{L} \tilde{\mu}_{L}$

- - - total

$--\tilde{\mu}_{L} \tilde{\mu}_{L}$
$\tilde{\mu}_{R} \tilde{\mu}_{R}$

Case-B: production of $\tilde{\mu}_{R} \tilde{\mu}_{R}$ and $\tilde{\mu}_{L} \tilde{\mu}_{L}$

- end points overlapped "twin peaks"

Case-B: production of $\tilde{\mu}_{R} \tilde{\mu}_{R}$ and $\tilde{\mu}_{L} \tilde{\mu}_{L}$

- - - total

$---\tilde{\mu}_{L} \tilde{\mu}_{L}$
$-\tilde{\mu}_{R} \tilde{\mu}_{R}$
- end points overlapped "twin peaks" Fit the shape?

Case-B: production of $\tilde{\mu}_{R} \tilde{\mu}_{R}$ and $\tilde{\mu}_{L} \tilde{\mu}_{L}$

Employ polarized beams possibilities:

$\mathcal{P}_{e^{-}}=+80 \%$ and $\mathcal{P}_{e^{+}}=-30 \%$ favors $\tilde{\mu}_{R} \tilde{\mu}_{R}$
($\mathrm{RH} e^{-} \& \mathrm{LH} e^{+}$)
$\mathcal{P}_{e^{-}}=-80 \%$ and $\mathcal{P}_{e^{+}}=+30 \%$ favors
(LH $\left.e^{-} \& \mathrm{RH} e^{+}\right)$

Case-B: production of $\tilde{\mu}_{R} \tilde{\mu}_{R}$ and $\tilde{\mu}_{I}^{-} \overline{\tilde{\mu}}_{I}^{-}$total $\mathcal{P}_{e^{-}}=+80 \%$ and $\mathcal{P}_{e^{+}}=-30 \%$

Case-B: production of $\tilde{\mu}_{R} \tilde{\mu}_{R}$ and $\tilde{\mu}_{L}^{-} \overline{\tilde{\mu}}_{L}^{-}$total $\mathcal{P}_{e^{-}}=-80 \%$ and $\mathcal{P}_{e^{+}}=+30 \%--\tilde{\mu}_{L} \tilde{\mu}_{L}$

Mass Determination

Likelihood Fit on the distributions determining $\left\{\Delta m_{B}, \Delta m_{X}\right\}$

Massless visible particle (Case-A): 0.5 GeV sensitivity
Massive visible particle (Case-C): 5 GeV

As comparison to the mono-photon search
A likelihood fit on the photon spectrum gives $\sim 50 \mathrm{GeV}$

The End

Thank you for the attention!

Some Questions

1.Cross section estimated for signal processes?
~20fb*100fb-1~2000 SG events
2. To compare with other ILC studies.
(Comparable to cascade, better than mono-photon)
3. Background:

- other dominant SUSY background X_1X_j(X_j>ll
+X_1) negligible with our vs, mass choice.
- SM: WW, ZZ, eemm (with ee missing down the beam pipe), eetautau

Some Plots

