Inflationary fluctuations with phase transitions

What is inflation all about?

$$
a(t) \sim e^{H t}
$$

- The initial conditions of Big Bang cosmology.
- The generation of primordial density fluctuations.

- The small deviation from scale-invariant primordial power spectrum.
- The existence of acoustic oscillation peaks.
- Current status: reported by inflationary speakers!

What is inflation all about?

What is inflation all about?

> The transition of vev plays a fundamental role in all inflation scenarios.

The single-field consistency relation

Maldacena (2003)

$$
\begin{aligned}
d s^{2} & =-d t^{2}+a^{2}(t) e^{2 \zeta_{S}(\mathbf{x})+2 \zeta_{L}} d \mathbf{x}^{2} \\
& =-d t^{2}+a^{2}(t) e^{2 \zeta_{S}(\tilde{\mathbf{x}})} d \tilde{\mathbf{x}}^{2}
\end{aligned}
$$

de Putter et al. [1610.00785]

The dilatation transformation

$$
\left\langle\zeta\left(k_{1}\right) \zeta\left(k_{2}\right)\right\rangle_{\zeta_{L}}=e^{-\left(n_{s}-1\right) \zeta_{L}}\left\langle\zeta\left(\tilde{k}_{1}\right) \zeta\left(\tilde{k}_{2}\right)\right\rangle_{0}
$$

The squeezed bispectrum $\quad \lim _{k_{3} \rightarrow 0}\left\langle\zeta\left(k_{1}\right) \zeta\left(k_{2}\right) \zeta\left(k_{3}\right)\right\rangle=-\left(n_{s}-1\right)\left\langle\zeta\left(k_{S}\right) \zeta\left(k_{S}\right)\right\rangle\left\langle\zeta\left(k_{L}\right) \zeta\left(k_{L}\right)\right\rangle$
> The curvature perturbation in single-clock inflation is conserved.
> The squeezed limit of bispectrum is suppressed by spacetime symmetry.

Cosmological collider

- probing signals of massive fields during inflation

Assassi, Baumann \& Green (2012)
Arkani-Hamed \& Maldacena (2015)

The squeezed bispectrum

$$
\frac{\langle\zeta \zeta \zeta\rangle}{\langle\zeta \zeta\rangle_{\text {short }}\langle\zeta \zeta\rangle_{\text {long }}} \sim \epsilon \sum_{i} w_{i}\left(\frac{k_{\text {long }}}{k_{\text {short }}}\right)^{\Delta_{i}}
$$

More in Yi Wang's talk!

Cosmological collider

- probing signals of massive fields during inflation

Steps towards new discovery: Chen, Wang \& Xianyu (2016, 2017a,b)

1. To work out the background signals during inflation.
\checkmark 2. To figure out how new particles enter the bispectrum.

Inflation with phase transitions

Inflation with phase transitions

$\mathcal{L}_{I} \sim \frac{\mu}{R^{2}}(\partial \phi)^{2} \sigma^{2}$

Inflation with phase transitions

$\mathcal{L}_{I} \sim \frac{\mu}{R^{2}}(\partial \phi)^{2} \sigma^{2}$
$\mathcal{L}_{I} \sim \frac{g^{2}}{2} \phi^{2} \sigma^{2}$

Inflation with phase transitions

Inflation with a turn

$$
\mathcal{L}_{I} \sim \frac{\mu}{R^{2}}(\partial \phi)^{2} \sigma^{2}
$$

> Signals of massive fields in squeezed bi-spectrum

An, McAneny, Ridgway \& Wise [1706.09971]

Inflation with a waterfall

$$
\mathcal{L}_{I} \sim \frac{g^{2}}{2} \phi^{2} \sigma^{2}
$$

Wang, YPW, Yokoyama \& Zhou [in preparation]
squeezed

$$
c=k / k_{c}
$$

- Methods .

- Cosmological in-in formalism:
- Perturbative interactions (gravitational or derivative couplings)
- Standard initial states (the Bunch-Davies vacuum)
- Effective field theory (equation-of-motion approach):
- Non-perturbative regime
- Mixed initial vacuum states

Phase transition triggered by slow-rolling

A modified potential:

$$
V(\phi, \sigma)=V_{\text {slow }-\mathrm{roll}}(\phi)+V_{0}\left[1-e^{-\sigma^{2} / \sigma_{c}^{2}}\right]+\frac{1}{2} m_{0}^{2} \sigma^{2}
$$

The two approaches matched at tree level.

Phase transition triggered by

 quantum fluctuations$$
\text { A step potential: } \quad \begin{array}{rlrl}
V_{1}(\sigma) & =\frac{\lambda}{4} v^{4}, & \sigma<0 \\
& =\frac{\lambda}{4}\left(\sigma^{2}-v^{2}\right)^{2} & & \sigma \geq 0
\end{array}
$$

$$
M^{2}=0 \quad M^{2}<0 \quad M^{2}>0
$$

$$
M^{2}=\frac{1}{H^{2}} \frac{\partial^{2} V(\sigma)}{\partial \sigma^{2}}
$$

The critical value of classical evolution: $\quad \sigma_{i} \geq 3 H_{i}^{3} /\left(2 \pi \lambda v^{2}\right)$

The duration of the growing phase:

$$
\Delta N=N_{f}-N_{i}=\frac{3}{M^{2}} \ln \left(\frac{2 \pi}{3 \sqrt{3 \lambda}} M^{3}\right) \quad \text { classical }
$$

$$
\Delta N=\frac{3}{2 M^{2}} \ln \left[\frac{M^{6}\left(2+4 \pi^{2} / \lambda\right)}{27+2 M^{6}}\right] \quad \text { stochastic }
$$

Phase transition triggered by

 quantum fluctuationsYPW \& Yokoyama [1704.05026]

$$
\text { A step potential: } \quad \begin{array}{rlrl}
V_{1}(\sigma) & =\frac{\lambda}{4} v^{4}, & \sigma<0 \\
& =\frac{\lambda}{4}\left(\sigma^{2}-v^{2}\right)^{2} & & \sigma \geq 0
\end{array}
$$

$$
\begin{gathered}
u_{k}^{\prime \prime}+\left(k^{2}-\frac{l^{2}-1 / 4}{\eta^{2}}\right) u_{k}=0 \\
l= \begin{cases}3 / 2, & \eta \leq \eta_{i}, \\
\sqrt{9 / 4+M_{-}^{2}}, & \eta_{i}<\eta \leq \eta_{f}, \\
\sqrt{9 / 4-M_{+}^{2}}, & \eta>\eta_{f}\end{cases}
\end{gathered}
$$

σ_{i}
The critical value of classical evolution:

$$
\sigma_{i} \geq 3 H_{i}^{3} /\left(2 \pi \lambda v^{2}\right)
$$

The duration of the growing phase:

$$
\Delta N=N_{f}-N_{i}=\frac{3}{M^{2}} \ln \left(\frac{2 \pi}{3 \sqrt{3 \lambda}} M^{3}\right)
$$

$$
\Delta N=\frac{3}{2 M^{2}} \ln \left[\frac{M^{6}\left(2+4 \pi^{2} / \lambda\right)}{27+2 M^{6}}\right]
$$

$$
\left\langle\zeta^{2}\right\rangle_{\mathrm{CIM}}=-\int^{\eta} d \eta_{1} \int^{\eta} d \tilde{\eta}_{1}\left\langle\left[H_{I}^{(3)}\left(\eta_{1}\right), \zeta(\eta)\right]\left(\left[H_{I}^{(3)}\left(\tilde{\eta}_{1}\right), \zeta(\eta)\right]\right)^{\dagger}\right\rangle
$$

One-loop channels: $\left\langle\zeta^{2}\right\rangle_{\mathrm{CIS}, 1}=-2 \operatorname{Re}\left[\int^{\eta} d \eta_{2} \int_{2}^{\eta} d \eta_{1}\left\langle\left[H_{I}^{(3)}\left(\eta_{1}\right),\left[H_{I}^{(3)}\left(\eta_{2}\right), \zeta(\eta)\right]\right] \zeta(\eta)\right\rangle\right]$, $\left\langle\zeta^{2}\right\rangle_{\mathrm{CIS}, 2}=-2 \operatorname{Im}\left[\int^{\eta} d \eta_{1}\left\langle\left[H_{I}^{(4)}\left(\eta_{1}\right), \zeta(\eta)\right] \zeta(\eta)\right\rangle\right]$.

$$
M^{2}<0
$$

Results of bilinear correlators

Loop corrections from phase transitions:

$$
\left\langle\zeta^{2}\right\rangle \sim \frac{H^{2}}{\epsilon M_{p}^{2}}\left[1+c_{*} \frac{H^{2}}{\epsilon M_{p}^{2}} \epsilon^{2} M^{4} \Pi_{\zeta}(a)+\left(c_{*} \frac{H^{2}}{\epsilon M_{p}^{2}} \epsilon^{2} M^{4} \Pi_{\zeta}(a)\right)^{2}+\ldots\right]
$$

YPW \& Yokoyama [1704.05026]

Messages (for the moment)

- The transition of vacuum expectation values (vevs) of scalar fields play a fundamental role in all inflation scenarios.
- Primordial signals of massive fields in the cosmological collider are enhanced by a waterfall phase transition.
- Loop corrections from spectator fields are never large, if they always stay in one stable vacuum during inflation.
- IR loop corrections are enhanced by phase transition with a growing vev (a tachyonic phase).

