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Inflationary fluctuations with phase transitions



What is inflation all about?

• The initial conditions of Big Bang cosmology. 

• The generation of primordial density fluctuations. 

• The small deviation from scale-invariant primordial power spectrum. 

• The existence of acoustic oscillation peaks. 

• Current status: reported by inflationary speakers! 
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when they re-enter the horizon. All modes with the same wavenumber
k, but possibly distinct wavevectors k, therefore start their evolution
at the same time. This phase coherence allows for constructive in-
terference of the modes and yields acoustic oscillations in the CMB.
Alternative mechanisms for structure formation involving topological
defects (e.g. cosmic strings, see §4.5.2) source perturbations with in-
coherent phases, smearing out the peaks [105], and are therefore ruled
out by the CMB observations. Isocurvature fluctuations also destroy
some of the phase coherence5 and are hence significantly constrained
by the data (see below).
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Fig. 1.11. The cross-correlation of CMB temperature anisotropies and E-mode
polarization (figure adapted from [8]). The curve is not a fit, but a prediction! The
low-` peak is a signature of phase coherence of the initial conditions.

. Power law spectrum.—We have seen above that slow-roll inflation pre-
dicts a power law spectrum with a percent-level deviation from perfect
scale-invariance, which Planck has detected at high significance. At
second order in the slow-roll expansion, inflation predicts a small cor-
rection to the power law spectrum
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The data is not yet precise enough to detect the expected running of
the spectrum, ↵s ⇠ (ns � 1)2, and a detection of running at a level

5 In contrived scenarios, causal evolution inside the horizon yields isocurvature perturba-
tions that lead to acoustic peaks [106] — see the review [107].
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Parameter Planck · · · + WMAP + ACT CMB + BAO

⌦bh
2 0.02207± 0.00067 0.02207± 0.00054 0.02214± 0.00048

⌦ch
2 0.1196± 0.0061 0.1198± 0.0052 0.1187± 0.0034

⌦
⇤

0.683± 0.040 0.685± 0.033 0.692± 0.021

⌧ 0.097± 0.080 0.091± 0.027 0.092± 0.026

109As 2.23± 0.32 2.20± 0.11 2.20± 0.11

ns 0.962± 0.019 0.959± 0.014 0.961± 0.011

Table 1.1. Parameters of the ⇤CDM baseline model (with 2� errors). The first
four parameters describe the composition of the universe, the last two its initial
conditions. The BAO data improves the constraint on ⌦

⇤

. The small-scale CMB
data hardly a↵ect the constraints but help with a characterization of foregrounds,
which becomes essential when going beyond the ⇤CDM model.

This result assumes that tensor fluctuations make a negligible contribution
to the temperature fluctuations. Allowing for tensors introduces a new
parameter, the tensor-to-scalar ratio r, cf. (1.36). With earlier datasets,
including r in the fit weakened the evidence for ns < 1, but with Planck
this result is now robust: see figure 1.10 and table 1.3.
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Fig. 1.10. Planck+WMAP+BAO constraints on ns and r (figure adapted
from [9]).
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➤ The transition of vev plays a fundamental role in all inflation scenarios.



The single-field consistency relation

➤ The curvature perturbation in single-clock inflation is conserved. 
➤ The squeezed limit of bispectrum is suppressed by spacetime symmetry.

ds2 = �dt2 + a2(t)e2⇣S(x)+2⇣Ldx2

= �dt2 + a2(t)e2⇣S(x̃)dx̃2

h⇣(k1)⇣(k2)i⇣L = e�(ns�1)⇣Lh⇣(k̃1)⇣(k̃2)i0

Maldacena (2003)

The squeezed bispectrum lim
k3!0

h⇣(k1)⇣(k2)⇣(k3)i = �(ns � 1)h⇣(kS)⇣(kS)ih⇣(kL)⇣(kL)i

The dilatation transformation

de Putter et al. [1610.00785]
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Fig. 1.12. Bispectrum of the local ansatz. The signal is peaked for squeezed
triangles.

122]. This leads to signals that peak in equilateral triangle configura-
tions, i.e. k1 ⇠ k2 ⇠ k3. To characterize this type of non-Gaussianity,
we return to the Goldstone action. At cubic order and to lowest order
in derivatives, we get [51] (see Appendix B for the derivation)
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We have two cubic operators, ⇡̇(@i⇡)
2 and ⇡̇3, but only one new param-

eter, A. This is a consequence of the nonlinearly-realized time trans-
lation symmetry, which relates the amplitude of the operator ⇡̇(@i⇡)

2

to the sound speed. In DBI inflation (see §5.3) one has A = �1 [40],
while more generally naturalness arguments suggest A ⇠ O(1) [113].
Both ⇡̇(@i⇡)

2 and ⇡̇3 produce bispectra that are well approximated by
the equilateral template (1.67) (see fig. 1.13).

. Orthogonal non-Gaussianity.—The two equilateral bispectra are not
identical, so one can find a linear combination of the two operators
⇡̇(@i⇡)

2 and ⇡̇3 that is orthogonal in a well-defined sense [123] to the
shape (1.67), and also to the local shape (1.66). This is the orthog-
onal template (1.68) [113]. In terms of the parameters of the La-
grangian (1.71), the signal is mostly of the orthogonal shape — specif-

Cosmological collider 
          — probing signals of massive fields during inflation

Which specific non-gaussianities are a signature of new particles during inflation,
as opposed to signatures that arise due to inflaton self interactions.

Now, if we think about very massive particles, m � H, then we can integrate them
out and they produce new terms in the e↵ective lagrangian for the light fields. Since we do
not know the original lagrangian, it is clear that we are not going to discover them in this
way. For masses of order H, m ⇠ H, the situation is di↵erent, because we can produce
the particles giving rise to non-local e↵ects which cannot be mimicked by changing the
interaction lagrangian of the inflaton. The fact that this is an interesting question was
addressed in [4, 5, 6, 7, 8, 9].
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Figure 1: (a) The three momenta of the three point function form a closed triangle. In
the squeezed limit, one of the sides, k

long

, is much smaller than the other two, k
short

. (b)
In this limit we can also define the angle � between the short and long mode momentum
vectors. (c) In position space we have two insertions at a short distance from each other,
associated to k

short

and one at a longer distance, k
long

. We are interested in considering
the e↵ects of massive fields, �, that can decay into pairs of inflatons. In an inflationary
background we can replace an inflaton fluctuation by the classical �̇

0

background, so that
we get a contribution to the three point function.

The large masses, this e↵ect is suppressed by e�⇡m/H , which is why it isn’t captured
by the e↵ective field theory which is an expansion in powers of (H/m).

The simplest non-gaussian observable is the three point function h⇣~k1⇣~k2⇣~k3i in Fourier
space. Translation invariance implies that the momenta form a closed triangle. The near
scale invariance of the fluctuations implies that this is a function of the shape of the
triangle. In particular we can form the ratio between the smallest side and the largest side
k
long

/k
short

. See figure 1(a). As a function of this ratio the three point function can display
interesting power law behavior for small values of this ratio. This is called the “squeezed”
limit. We find
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where �i can be real or complex, wi are some coe�cients and ✏ is a slow roll parameter
(see [4]). This form of the correlator is a consequence of the slightly broken conformal
symmetry of the late time wavefunction of the inflationary universe.
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Arkani-Hamed & Maldacena (2015)

Which specific non-gaussianities are a signature of new particles during inflation,
as opposed to signatures that arise due to inflaton self interactions.

Now, if we think about very massive particles, m � H, then we can integrate them
out and they produce new terms in the e↵ective lagrangian for the light fields. Since we do
not know the original lagrangian, it is clear that we are not going to discover them in this
way. For masses of order H, m ⇠ H, the situation is di↵erent, because we can produce
the particles giving rise to non-local e↵ects which cannot be mimicked by changing the
interaction lagrangian of the inflaton. The fact that this is an interesting question was
addressed in [4, 5, 6, 7, 8, 9].
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where �i can be real or complex, wi are some coe�cients and ✏ is a slow roll parameter
(see [4]). This form of the correlator is a consequence of the slightly broken conformal
symmetry of the late time wavefunction of the inflationary universe.
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The squeezed bispectrum
Assassi, Baumann & Green (2012)

More in Yi Wang’s talk!



Cosmological collider 
          — probing signals of massive fields during inflation

Steps towards new discovery:

1. To work out the background signals during inflation. 

2. To figure out how new particles enter the bispectrum.

Chen, Wang & Xianyu (2016,2017a,b)

✔
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FIG. 2. A numerical example for �̄(N) that generates an ocsillating trajectory due to the waterfall

phase transition. The dashed line depicts the evolution of the positive branch of �̄
min

.

The solution of (13) reads

�̄ = eAN2/2

"
�̄c +B

r
⇡

2A
Erf

 r
A

2
N

!#
. (15)

Since �̄c ⇡ B�N , it turns out that �̄ ' �̄ce
AN2/2 if �N �

p
⇡/(2A).

The waterfall ends when � reaches the new minima at ✓ > ✓c. Taking the solution (12),

the condition V� = 0 with N > 0 indicates that

�̄
min

= ±
r

3H2

cA

�R2

N, (16)

which is evolving with time. We can estimate the end of the phase transition at the epoch

of N = Nf where �̄(Nf ) = �̄
min

. This implies that

N2

f =
1

A
ln


3H2

cA

�R2�2

c

Nf

�
. (17)

III. POWER SPECTRUM

In this section we compute the corrections to the power spectrum due to the waterfall

isocurvaton. The methodology used for the current research is developed in Ref. [1].
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Chen & Wang (2009)

20

FIG. 11. In the squeezed limit, the three-point function logarithmically oscillates as a function of
c. This behavior is illustrated for µ = 2 and m = 0, 0.5H, H, 1.5H, and 2H. The solid lines show
the exact behavior as a function of c (i.e. using equation (6.9)) whereas the dotted lines show the
approximate behavior to quadratic order in c (i.e. using equation (6.10)).

= V 000
S H�4k3c�3Im

⇥
c↵���(µ,m) + c↵+�+(µ,m) + c2�2(µ,m)

⇤

(6.10)
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We can compute ��, �+, and �2 by fitting the numerical mode functions s(i)k (⌘) to their

power series expansions at small �⌘ and extracting b(i)± , b(i)2 from the fits. The integrals in
(6.11) can be computed using the same Wick rotation technique used to compute Bequil

⇡ .
Then, rearranging (6.10) gives

Bsq
⇡ = V 000

S H�4k3c�3/2 (6.12)

⇥ �
Im [�+ + ��] cos (log(c)Im [↵+]) + Re [�+ � ��] sin (log(c)Im [↵+]) + c1/2Im [�2]

�

We plot Im [�+ + ��] in figure 10. The sine term is usually smaller and so we have not
displayed it in a figure. Equation (6.12) shows that the squeezed limit of the three-point
function oscillates logarithmically as a function of c. This behavior is illustrated in figure
11. Note that that the dependence of Im [↵+] =

p
m2/H2 + µ2/H2 � 9/4 on µ has an

important e↵ect on the oscillations. This impacts the two point function of biased objects,
see for example [30].

The oscillatory terms in eq. (6.12) are enhanced by a factor of c�1/2, but are suppressed
in the large µ limit.

An, McAneny, Ridgway & Wise [1706.09971]

➤ Signals of massive fields in squeezed bi-spectrum
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Wang, YPW, Yokoyama & Zhou [in preparation]

Inflation with a waterfall

Linde (1993)

Gong & Sasaki (2010)
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- Methods -

• Cosmological in-in formalism:
• Perturbative interactions (gravitational or derivative couplings) 
• Standard initial states (the Bunch-Davies vacuum) 

• Effective field theory (equation-of-motion approach): 
• Non-perturbative regime 
• Mixed initial vacuum states 



Phase transition triggered by 
slow-rolling

The two approaches matched at tree level. 

A modified potential: 

Chen, Namjoo & Wang [1505.03955]
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Figure 4: The time dependence of the correction to power spectrum for the SC model. The
horizontal axis is number of efolds counted from the initial time. The parameters are similar to
ones in Fig.3. The mode crosses the horizon at n ' 6.4.

5.1 Density perturbations with strong coupling

As we mentioned at the end of Sec. 3, the validity of the EoM approach does not rely on the

perturbative condition. Therefore, solving the linearly coupled di↵erential equations in the

EoM approach produces the full tree-level non-perturbative two-point correlation function.

Formally in terms of the in-in formalism, this would correspond to a non-perturbative re-

summation of all the tree-level diagrams for the two-point correlation function.

We emphasize that this is of course not the full non-perturbative result because the loop

diagrams are not included; nonetheless it is an interesting subset. Another limitation is that

this procedure only applies to the tree-level two-point correlation functions due to the lin-

earity condition in the EoM approach assumed in the proof in Sec. 3. Possible generalization

would be very interesting.

To study this in an example, we note that, in the QSF inflation model, the coupling

between the inflaton and the massive field � is of order ✓̇/H. In the previous examples,

this coupling is taken to be small so the correction to the leading power spectrum is small.

For large ✓̇/H, the perturbative expansion in the in-in formalism breaks down, while the

numerical computation in the EoM approach is essentially unchanged. In Fig.5 we plot the

results for such a strong coupling case. We see large mismatch between the result from the

EoM approach and that from the first order term in the in-in approach. This shows that

the higher order corrections in the in-in formalism are non-negligible.

It would be interesting to see if the EoM may be solved analytically, or if all the tree-level

diagrams in the in-in formalism may be re-summed. We leave these for future investigation.

5.2 Correlated initial states

In this subsection we consider a more general initial condition in which the two fields are

correlated. As we already discussed, we only need to satisfy initial commutation relations
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Figure 3: The correction to the power spectrum for the SC model. The left (right) panel is the
results for the BD (a non-BD) initial conditions. For the non-BD case we have set D✓ = D� = 1/2
and hence C✓ = C� =

p
5/4. For other parameters we have set R = 2.7MP, m0 ' 0.7H and

m ' 0.1H, �f ' 0.05MP, V0 ' 2.7 ⇥ 10�9M4
P and the initial conditions for background fields are

tuned such that the transition occurs at n = 6.

and

(R + �0(⌧)) uk = 0 , vk = i
H⌧p
2k

�
C� e

�ik⌧ �D� e
ik⌧

�
. (4.28)

The procedure of solving the EoM, and the formula for the in-in formalism approach, are

the same as in Sec. 4.1.

In Fig.3 we plot the fractional correction to the power spectrum obtained by both ap-

proaches for the two cases of BD and non-BD initial conditions.4 In Fig.4, we show the

time-dependence of one of the modes in the BD case. We see that two approaches match

very well.5

5 Several extensions

The procedures in the two approaches reviewed in Sec. 2.1 and Sec. 2.2 are commonly used

in the literature. In this section, motivated by the explicit proof of the equivalence between

the two approaches presented in Sec. 3, we discuss several extensions of these procedures

that may be applied to new categories of models.

4The examples used here are di↵erent from the best-fit examples in [29]. Here we used the large field
examples where the e↵ect of the 2nd field is more important, although this cases does not fit the data. Our
purpose is to show the equivalence between the two approaches.

5We observe that even for a large correction the two approaches match pretty well. It seems even for
this seemingly non-perturbative case the higher order corrections in the in-in formalism are still negligible.
We currently do not understand why this is the case, but we expect generally this would not be true (see
Sec. 5.1).
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Figure 1: Evolution of the mass parameter M2 during the classical transition of � in a
quasi de Sitter expansion with a fixed slow-roll parameter ✏H = 0.001, where the initial
conditions are � = �i and d�/dN = 0 at N = 0. Both V1 and � are shown in the unit
of Hi = 1 ⇥ 10

�6Mp. The potential parameters are � = 0.01, v = 10Hi, and therefore
�i ⇡ 4.8⇥ 10

�7Mp.

the behavior of the � field can be described by the classical equation of motion (A.4), and
for � > 0 we have

d2�

dN2
+ (3� ✏H)

d�

dN
+


�

H2
(�2 � v2)

�
� = 0, (3.4)

where N ⌘ ln a is the e-folding number.
At some value � = �i > 0, the classical deviation ��c start to surpass the quantum

effect ��q and the field will start to roll down the plateau. Since the transition is smooth
for |M2| ⇠ O(1), we neglect the term d2�/dN2 so that (3.4) becomes

d�

dN
=

�v2

3H2
�, (3.5)

for � ⌧ v, where we can omit the correction from ✏H . Taking H ⇡ Hie
�✏i(N�Ni), where ✏i

is the value of ✏H evaluated at ⌘ = ⌘i, the solution of (3.4) is given by

� = �i exp


1

2✏i

�v2

3H2
i

⇣
e2✏i(N�Ni) � 1

⌘�
. (3.6)

The value of �i can be estimated by the classical deviation within one e-fold as ��c ⇠ �v2

3H2�,
and the condition ��c � H

2⇡ gives �i � 3H3
i /(2⇡�v

2
).

Once � reaches the value v/
p
3, the mass square M2 starts to change from negative

to positive. We can estimate the duration of the slow roll in a pure de Sitter expansion by
taking ✏i ! 0, where (3.6) shows

� ! �i exp


�v2

3H2
i

(N �Ni)

�
. (3.7)
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YPW & Yokoyama [1704.05026]
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Figure 1: Evolution of the mass parameter M2 during the classical transition of � in a quasi
de Sitter expansion with a fixed slow-roll parameter ✏H = 0.001, where the initial conditions
satisfy � = 0 and d�/dN = g3/(3H2

i ) at N = 0. Both V1 and � are shown in the unit of
Hi = 1⇥ 10

�6Mp. The potential parameters are � = 0.01, v = 10Hi, and g = 0.2Hi.

where N ⌘ ln a is the e-folding number.
At some value � = �i > 0, the classical deviation ��c start to surpass the quantum

effect ��q and the field will start to roll down the plateau. Since the transition is smooth for
|M2| ⇠ O(1), we neglect the term d2�/dN2 so that (3.4) becomes

d�

dN
=

�v2

3H2
�, (3.5)

for � ⌧ v, where we can omit the correction from ✏H . Taking H ⇡ Hie
�✏i(N�Ni), where ✏ is

a constant value of ✏H , the solution of (3.4) is given by

� = �i exp


1

2✏

�v2

3H2
i

⇣
e2✏(N�Ni) � 1

⌘�
. (3.6)

The value of �i can be estimated by the classical deviation within one e-fold as ��c ⇠ �v2

3H2�,
and the condition ��c � H

2⇡ gives �i � 3H3
i /(2⇡�v

2
).

Once � reaches the value v/
p
3, the mass square M2 starts to change from negative to

positive. We can estimate the duration of the slow roll in a pure de Sitter expansion by taking
✏ ! 0, where (3.6) shows

� ! �i exp


�v2

3H2
i

(N �Ni)

�
. (3.7)

The phase of slow roll ends at �f = v/
p
3 at N = Nf , where we define M2

i ⌘ �v2/H2
i and

�N = Nf �Ni =
3

M2
i

ln

✓
2⇡

3

p
3�

M3
i

◆
. (3.8)

The condition �N > 0 implies 4⇡2

27 M6
i > �. The result of (3.8) implies �N ! 0 as Mi ! 1,

given that in the large mass limit the rolling finishes immediately as similar to an event of a
first-order phase transition.
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Figure 1: Evolution of the mass parameter M2 during the classical transition of � in a
quasi de Sitter expansion with a fixed slow-roll parameter ✏H = 0.001, where the initial
conditions are � = �i and d�/dN = 0 at N = 0. Both V1 and � are shown in the unit
of Hi = 1 ⇥ 10

�6Mp. The potential parameters are � = 0.01, v = 10Hi, and therefore
�i ⇡ 4.8⇥ 10

�7Mp.

the behavior of the � field can be described by the classical equation of motion (A.4), and
for � > 0 we have
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where N ⌘ ln a is the e-folding number.
At some value � = �i > 0, the classical deviation ��c start to surpass the quantum

effect ��q and the field will start to roll down the plateau. Since the transition is smooth
for |M2| ⇠ O(1), we neglect the term d2�/dN2 so that (3.4) becomes
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=

�v2

3H2
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a free � field again and results in a propagating ⇣ at third order. h⇣2iCIS,1 is then the
correlation of a third-order ⇣ with a free ⇣ field. Similarly, h⇣2iCIS,2 is also a correlation of a
third-order ⇣ with a free ⇣ field, where the third-order ⇣ field is generated by the scattering
of a free ⇣ with a pair of free � fields through the interaction H

(4)
I .

4.1 Linear perturbations with phase transitions

We have seen that � can obtain a time-dependent mass square M2
= V��/H

2 during a
transition to another local minimum, and that M2 can become negative during phase tran-
sitions. To specify the discussion, we consider a transition driven by the type of potentials
as (3.2). We can solve the mode function uk = a��k with a simplified equation of motion
given by

u00k +

✓
k2 � l2 � 1/4

⌘2

◆
uk = 0, l =

8
>><

>>:

3/2, ⌘  ⌘i,q
9/4 +M2

�, ⌘i < ⌘  ⌘f ,q
9/4�M2

+, ⌘ > ⌘f ,

(4.7)

where M2
� = |M2| is the phase that M2 < 0, and therefore l > 3/2 for ⌘i < ⌘  ⌘f and

0 < l < 3/2 for ⌘ > ⌘f . Without the loss of generality, � is assumed to be massless by ⌘i.
Given that � starts to roll down from very close to the origin, we may neglect the change

of � in (3.3) so that M2 ⇡ ��v2/H2 is a good approximation in the first few e-foldings,
where the time dependence in M is mild with a sufficently small ✏H . To reach a good
understanding on the behavior of uk, it is enough to consider a pure de Sitter expansion
by taking ✏H = 0, and thus H = Hi, ⌘ = �1/H = �1/(Hia). Using a new time variable
z = k⌘, the solution of (4.7) with a constant M2

� = �v2/H2
i and a constant M2

+ = 2�v2/H2
i

reads

��k =

Hp
2k3

e�iz
(i� z), z  zi, (4.8)

=

Hp
k3

(�z)3/2[b1(k)Jl(�z) + i b2(k)Yl(�z)], zi < z  zf , (4.9)

=

Hp
k3

(�z)3/2[c1(k)Jl(�z) + i c2(k)Yl(�z)], z > zf , (4.10)

where zi ⌘ k⌘i and Jl(Yl) is the Bessel fuction of the first (second) kind.
Let us first focus on the time interval zi < z  zf . If M2

� ⌧ 1, the mode function ��k
with k < ki ⌘ �1/⌘i is nearly a constant by z = zi. In the limit z ! 0, ��k ! iH/

p
2k3

in (4.8) while Jl(�z) automatically drops out in (4.9), and one can match the solution at
z = zi to find that b2 = �⇡(�zi)

l�3/2/(
p
2 2

l
�(l)), where

��k = i
Hp
2k3

✓
z

zi

◆3/2�l

. (4.11)

On the other hand, ��k with k > ki leaves the horizon at some epoch ⌘k > ⌘i, where
⌘k & �1/k. Although b1, b2 can be solved by matching the value of ��k and ��0

k at z = zi,
in the limit zi � 1 we find that

b1 ⇡ b2 !
p
⇡

2

exp

h
i
⇣⇡
2

l +
⇡

4

⌘i
, (4.12)
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Figure 2: One-loop diagrams of the cut-in-the-middle (CIM) and the cut-in-the-side (CIS)
types. Solid (dotted) lines are external (internal), ⇣ and �� are free fields, arrows are
propagators, black dots are vertices, and ⇣(i) is a propagating ⇣ field at i-th order in per-
turbations. In each diagram one dotted circle must correlates with one solid circle in order
to get non-vanished contributions, and there is no correlation between ⇣ and �� fields.

the time-integration is projected from |0i to |⌦i. Equation (4.1) is then interpreted as the
two-point correlation of ⇣I evolved from ⌘1 to ⌘ after projecting the free vacuum to the
interacting vacuum with the operator

UI(⌘, ⌘1) = ˆTe
�i

R ⌘
⌘1

d⌘̃ HI(⌘̃), (4.2)

that satisfies UI(⌘, ⌘1)U
†
I (⌘, ⌘1) = 1. The Taylor expansion of UI up to second order in HI

leads to [16]:

h⇣2i = h⇣2iCIM + h⇣2iCIS,1 + h⇣2iCIS,2 (4.3)

where CIM denotes the contribution from the cut-in-the-middle diagrams and CIS denotes
those from the cut-in-the-side diagrams. In particular, these one-loop diagrams are given
by the cubic interactions H

(3)
I and the quartic interactions H

(4)
I as

h⇣2iCIM = �
Z ⌘

d⌘1

Z ⌘

d⌘̃1

⌧h
H

(3)
I (⌘1), ⇣(⌘)

i ⇣h
H

(3)
I (⌘̃1), ⇣(⌘)

i⌘†
�
, (4.4)

h⇣2iCIS,1 = �2 Re

Z ⌘

d⌘2

Z ⌘

2
d⌘1

Dh
H

(3)
I (⌘1),

h
H

(3)
I (⌘2), ⇣(⌘)

ii
⇣(⌘)

E�
, (4.5)

h⇣2iCIS,2 = �2 Im

Z ⌘

d⌘1

Dh
H

(4)
I (⌘1), ⇣(⌘)

i
⇣(⌘)

E�
. (4.6)

As seen by (2.5), interactions with each one ↵ is suppressed by one factor ✏� ' ✏H , and
interactions involved with � are higher-order in the slow-roll parameters. To the leading
order in ✏�, H(3)

I derived from (2.14) comprises a ⇣ field and a pair of � fields, while H
(4)
I

includes a pair of ⇣ fields and a pair of � fields. In this case there is only one corresponding
CIM diagram, where two free � fields scatter to generate a propagating ⇣ at second order
and h⇣2iCIM is the correlation of two of these propagating ⇣ fields.

There are two kinds of CIS diagrams. The first one is a propagating second-order �

field generated by a scattering of a free ⇣ with a free �. This propagating � scatters with
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There are two kinds of CIS diagrams. The first one is a propagating second-order �

field generated by a scattering of a free ⇣ with a free �. This propagating � scatters with
a free � field again and results in a propagating ⇣ at third order. h⇣2iCIS,1 is then the
correlation of a third-order ⇣ with a free ⇣ field. Similarly, h⇣2iCIS,2 is also a correlation of a
third-order ⇣ with a free ⇣ field, where the third-order ⇣ field is generated by the scattering
of a free ⇣ with a pair of free � fields through the interaction H

(4)
I .

4.1 Linear perturbations with phase transitions

We have seen that � can obtain a time-dependent mass square M2
= V��/H

2 during a
transition to another local minimum, and that M2 can become negative during phase tran-
sitions. To specify the discussion, we consider a transition driven by the type of potentials
as (3.2). We can solve the mode function uk = a��k with a simplified equation of motion
given by
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where M2
� = |M2| is the phase that M2 < 0, and therefore l > 3/2 for ⌘i < ⌘  ⌘f and

0 < l < 3/2 for ⌘ > ⌘f . Without the loss of generality, � is assumed to be massless by ⌘i.
Given that � starts to roll down from very close to the origin, we may neglect the change

of � in (3.3) so that M2 ⇡ ��v2/H2 is a good approximation in the first few e-foldings,
where the time dependence in M is mild with a sufficently small ✏H . To reach a good
understanding on the behavior of uk, it is enough to consider a pure de Sitter expansion
by taking ✏H = 0, and thus H = Hi, ⌘ = �1/H = �1/(Hia). Using a new time variable
z = k⌘, the solution of (4.8) with a constant M2

� = �v2/H2
i and a constant M2

+ = 2�v2/H2
i
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M2 < 0 ➤ The dominant decay channel changed!
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Figure 3: The value of the mass-dependence in the one-loop h⇣2iCIM correlation function
for k < ki given by Eq. (4.30) with respect to the mass parameter M� evaluated at ⌘ = ⌘f .

We put a conservative upper bound M�  2 to justify the assumption (4.11). The loga-
rithmic scale-dependence ln(k/k0) in (4.30) is subject to the projection effect between two
superhorizon modes, which should have no importance for cosmological observables [17].
The study of this issue is beyond the scope of the current paper.

Since ��k starts to decay after the mass square changes to be positive, the source
S⇣ has a maximum value around ⌘ = ⌘f . We may estimate the value of ⇧⇣(zf ) from
(3.8) in a pure de Sitter expansion by taking M2

� = M2
i . Suppose that the energy scale

of inflation is H2
i /M

2
p ⇠ ✏i ⇥ 10

�10, then the result in Figure 3 shows that the one-loop
correction h⇣2iCIM can have a value around ✏2iM

4
⇧⇣ ⇥ 10

�10 times smaller than the tree
expectation value h⇣2itree ⇠ H2

i /(✏iM
2
p ). With a self-coupling � ⇠ 10

�8 one may realize
h⇣2iCIM/h⇣2itree ⇠ O(1), where ✏ < 0.0068 according to [1]. This loop correction can be
much larger than the usual expectation from massless fields or massive spectator fields that
always live in some stable vacuum states [9, 16]. In Figure 3 the result of (3.8) is used
and we have checked that this result is nearly unchanged by using the result of (3.12) for
M� < 1. The condition �N > 0 indicates M� > 0.044 for � = 1 ⇥ 10

�8. Note that the
decay of ��k at ⌘ > ⌘f only makes S⇣ decay in (4.21) but the curvature perturbation is
always enhanced during the phase transitions. As S⇣ ! 0, ⇣ converges to a constant again
and the h⇣2iCIM correction enhanced by temporarily growing perturbations becomes nearly
frozen from ⌘ = ⌘f to the end of inflation.

For kf > k > ki, we have zi > 1 and the time integration is chosen to start at some
epoches zk & �1 where all internal modes p  k with the cutoff y = 1 have left the horizon.
In this case the correlation function (4.26) with the solution (4.13) is again dominated by
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Results of bilinear correlators

YPW & Yokoyama [1704.05026]

Loop corrections from spectator 
fields may be more important 
than the previous conclusion!

to all orders is schematically given by

h⇣2i ⇠ H2

✏M2
p

"
1 + c⇤

H2

✏M2
p

✏2M4
⇧⇣(a) +

✓
c⇤

H2

✏M2
p

✏2M4
⇧⇣(a)

◆2

+ . . .

#
, (5.1)

where c⇤ is a constant factor of O(1�10), and ⇧⇣(a) / a4l�6 for l 6= 3/2, as given by (4.31).
Since l = l(M), the time-dependent factor evaluated at a certain epoch ⇧⇣(a⇤) = ⇧⇣(M) is
in fact a function of the mass. In the case of a positive mass square (l < 3/2), higher-order
terms decay rapidly so that loop corrections have no effects on the physical observable.
With a phase of a smooth transition of the field expectation value, there can be a period of
M2 < 0 (l > 3/2) where loop corrections grow with time and the duration of the growing
phase is also mass-dependent. In the scenario (3.2) we always find a maximum correction
around

p
|M2| = 2 with a large enhancing factor M4

⇧⇣(M) that depends on the model
parameters. We can constrain the value of � from the condition M4

⇧⇣(M) < M2
p /(✏H

2
)

for the breakdown of perturbative expansion. For a large mass |M2| = 4 we find � >

7 ⇥ 10

�9 with ✏ = 0.0068 from (3.8). On the other hand, the condition �
4v

4 ⌧ 3M2
pH

2

that the massive field has a subdominant density during inflation gives a milder constraint
� � 4

3✏⇥ 10

�10 for an effective mass �v2 = 4H2.
Before closing the discussion, we briefly comment the consequence due to the self-

coupling of the massive field. For example, a self-interaction L ⇠ a4��4 as a part of the
potential may allow us to perform arbitrary 1PI insertion to any internal �-field line with the
introduction of two more free �� fields. In this case the breakdown of perturbative expansion
would request � < e�N(3�2l) ' 9⇥10

�7 with �N given by (3.8) at
p
|M2| = 2. However the

temporal divergence due to the self-coupling of a massive field is not specific for a negative
mass square and is also found in the case with a positive mass square [34]. We believe that
part of the temporal divergence should be removed by some renormalizations of the theory,
as the finding from a resummation of the perturbative masses [9]. A resummation of the
quartic self-corrections of a massive field to the propagator in the M2 ⌧ 1 limit has been
performed through the dynamical renormalization group method [47, 48], and the question
that how are the self-corrections behave after these treatments is left for future efforts.

6 Conclusions

The transition of vacuum expectation values of scalar fields may play an essential role in cos-
mic inflation. In this work we have studied loop corrections to primordial fluctuations from
a kind of phase transition during inflation that massless fields randomly found their global
minima purely triggered by quantum fluctuations. The transitional phase involves with a
classical evolution effectively driven by a negative mass term where field perturbations start
to grow on superhorizon scales.

At one-loop level, we found that important corrections are only generated by field
perturbations that have been frozen outside the horizon by the starting time of phase
transition. The dominant diagram at this level is pratically a classical process where a
second-order perturbation is created by the scattering of two linear perturbations. We also
found that the resulting loop corrections are only sensitive to those field masses comparable
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Loop corrections from phase transitions:

k < ki

ki k f

ki < k < k f

IR



Messages (for the moment)

• The transition of vacuum expectation values (vevs) of scalar 
fields play a fundamental role in all inflation scenarios. 

• Primordial signals of massive fields in the cosmological collider 
are enhanced by a waterfall phase transition. 

• Loop corrections from spectator fields are never large, if they 
always stay in one stable vacuum during inflation. 

• IR loop corrections are enhanced by phase transition with a 
growing vev (a tachyonic phase).


