Natural cliff inflation

Jinn-Ouk Gong

KASI, Daejeon 34055, Korea

CosPA 2017 YITP, Kyoto, Japan 12th December, 2017

590

Based on JG and C. S. Shin, arXiv:1711.08270 [hep-ph]

Introduction	Model	Prediction	Conclusions
000	00000	00000	0
Outling			
Outime			

・ロト・日本・日本・日本・日本・日本

Natural cliff inflation

Jinn-Ouk Gong

Introduction	Model	Prediction	Conclusions
000	00000	00000	0

2 Model

Natural cliff inflation

Jinn-Ouk Gong

Introduction Model Prediction Conclusions

Successful slow-roll inflation needs flat potential

$$\epsilon \equiv \frac{m_{\rm Pl}^2}{2} \left(\frac{V'}{V}\right)^2 \ll 1$$
(potential is flat)

$$\eta \equiv m_{\rm Pl}^2 \frac{V''}{V} \ll 1$$
(flatness lasts long enough)

ヘロア 人間 アメヨアメヨア

Flatness is fragile under corrections, e.g. η problem (Copeland et al. 1994)

$$\Delta V \sim \frac{\phi^2}{\Lambda^2} V_0 \rightarrow \Delta \eta \sim \frac{m_{\rm Pl}^2}{\Lambda^2} \gtrsim 1$$

000	00000	00000	0
Inflaton wit	h or mana ot my		

Inflaton with symmetry

Inflaton protected by symmetry is good, e.g. shift symmetry

Shift symmetry $\phi \rightarrow \phi + c$

Natural cliff inflation

Jinn-Ouk Gong

200

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

T			
000	00000	00000	0
Introduction	Model	Prediction	Conclusions

Inflaton with symmetry

Inflaton protected by symmetry is good, e.g. shift symmetry

Shift symmetry $\phi \rightarrow \phi + c$ is (softly) broken at a scale f so that

$$V(\phi) = \Lambda^4 \left[1 + \cos\left(\frac{\phi}{f}\right) \right]$$

"Natural inflation" (Freese, Frieman & Olinto 1990; Adams et al. 1993)

But CMB observations prefer $f \sim 5 m_{\text{Pl}}$, so EFT is doubtful

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Introduction		Model	Prediction	Conclusions
000		00000	00000	0
тт ,	1.	1. 0.		

How to realize natural inflation

We can realize natural inflation by either

- \bullet obtaining (effective) super-Planckian f
 - Extranatural inflation (Arkani-Hamed, Cheng, Creminelli & Randall 2003)
 - Aligned axion (Kim, Nilles & Peloso 2005)
 - N-flaton (Dimopoulos, Kachru, McGreevy & Wacker 2008)
- ② finding working models with sub-Planckian f
 - ✓ We present an explicit model that allows $f \ll m_{\rm Pl}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Introduction	Model	Prediction	Conclusions
000	00000	00000	0

Natural cliff inflation

Introduction Model Prediction Conclusion 000 •0000 0000 0 CD on grulou field with a game model

5D angular field with a zero mode

A 5D angular field $\theta(x, y)$ with shift symmetry $(\theta \rightarrow \theta + c)$

$$S[\theta] = \int d^5 x f_5^3 \left[-\frac{1}{2} (\partial_M \theta)^2 \right]$$

Natural cliff inflation

Introduction Model Prediction Conclusion

5D angular field with a zero mode

A 5D angular field $\theta(x, y)$ with shift symmetry $(\theta \rightarrow \theta + c)$

$$S[\theta] = \int d^5x f_5^3 \left[-\frac{1}{2} (\partial_M \theta)^2 - V_{\text{bulk}}(\theta) \right]$$

- $V_{\text{bulk}}(\theta)$: Bulk potential with a mass parameter *m*
 - Shift symmetry is (softly) broken
 - No massless mode

• □ ▶ • □ ▶ • □ ▶ • □ ▶

 Introduction
 Model
 Prediction

 000
 00000
 00000

 5D angular field with a zero mode

A 5D angular field $\theta(x, y)$ with shift symmetry $(\theta \rightarrow \theta + c)$

$$S[\theta] = \int d^5x f_5^3 \left[-\frac{1}{2} (\partial_M \theta)^2 - V_{\text{bulk}}(\theta) - V_{\text{boundary}}(\theta) \right]$$

- $V_{\text{bulk}}(\theta)$: Bulk potential with a mass parameter *m*
 - Shift symmetry is (softly) broken
 - No massless mode
- **2** $V_{\text{boundary}}(\theta)$: Potential localized at boundaries
 - With S_1/Z_2 , $y_b = 0$ and $y_b = \pi R$
 - Massless mode with a non-trivial profile along *y*

< ロ > < 同 > < 回 > < 回 > .

 Introduction
 Model
 Prediction

 000
 00000
 00000

 5D angular field with a zero mode

A 5D angular field $\theta(x, y)$ with shift symmetry $(\theta \rightarrow \theta + c)$

$$S[\theta] = \int d^5x f_5^3 \left[-\frac{1}{2} (\partial_M \theta)^2 - V_{\text{bulk}}(\theta) - V_{\text{boundary}}(\theta) \right]$$

- $V_{\text{bulk}}(\theta)$: Bulk potential with a mass parameter *m*
 - Shift symmetry is (softly) broken
 - No massless mode
- **2** $V_{\text{boundary}}(\theta)$: Potential localized at boundaries
 - With S_1/Z_2 , $y_b = 0$ and $y_b = \pi R$
 - Massless mode with a non-trivial profile along *y*

Consider e.g. the following potential (Choi, Im & Shin 2017):

$$V_{\text{bulk}} + V_{\text{boundary}} = -\frac{1}{4}m^2\cos(2\theta) + \frac{1}{4}m^2 - 2m\cos\theta\left[\delta(y) - \delta(y - \pi R)\right]$$

< ロ > < 同 > < 三 > < 三 > -

duction	Model	Prediction	Conclusions
	0000	00000	0
ofile of zero	node in 5D		
ofile of zero	mode in 5D		

• Massless mode can be found from 5D action

$$S[\theta] = \int d^5 x \frac{-f_5^3}{2} \left[(\partial_\mu \theta)^2 + \left(\partial_y \theta + m \sin \theta \right)^2 \right]$$

• Mode expansion: $\theta(x, y) = \langle \theta \rangle + \sum_{n=0} f_n(y)\phi_n(x)$ with

$$\langle \theta \rangle = 2 \tan^{-1} \left[e^{-my} \langle u(\phi) \rangle \right] \equiv 2 \tan^{-1} \left[e^{-m(y-y_0)} \right]$$

Zero mode is localized according to $\langle \phi \rangle$

• Higher order profiles could be found iteratively

 $f_0(y) \sim \operatorname{sech}[m(y - y_0)]$, and so on

Model 00000 Zero mode as a 4D massless field

From the zero mode action (suppressing 4D integral notation)

$$S = \int_0^{\pi R} dy \frac{-f_5^3}{2} (\partial_\mu \theta) = -\frac{1}{2} (\partial_\mu \phi)^2$$

Zero mode θ_0 is eplicitly

$$\theta_0(x, y) = 2 \tan^{-1} \left[i e^{-my} \sin \left(\frac{\phi(x)}{2if} \middle| e^{-2m\pi R} \right) \right] \text{ with } f \equiv \sqrt{\frac{f_5^3}{2m}} (1 - e^{-2m\pi R})$$

イロト イ団ト イヨト イヨト

nar

Shape of the potential

• Half period
$$\pi F_{\phi} = 2fK \left(1 - e^{-2m\pi R}\right)$$

• Shape is exponentially sensitive to *mR*

< Ξ

Introduction	Model	Prediction	Conclusions
000	00000	00000	0

2 Model

Natural cliff inflation

Jinn-Ouk Gong

Introduction	Model	Prediction	Conclusions
000	00000	00000	0
Full analytic	results		

Given the potential for a canonical field we can find

$$A_{\mathscr{R}} = \frac{1}{6\pi^2} \frac{\Lambda^4}{m_{\rm Pl}^4} \frac{f^2}{m_{\rm Pl}^2} \frac{\mathrm{sn}^4 (1 - \mathrm{sn}^2)}{\mathrm{cn}^2 \mathrm{dn}^2} \approx 2.21 \times 10^{-9}$$
$$n_{\mathscr{R}} = 1 + \frac{m_{\rm Pl}^2}{f^2} \frac{(1 - \mathrm{sn}^2)(\mathrm{cn}^2 + \mathrm{dn}^2 + \mathrm{cn}^2 \mathrm{dn}^2) - \mathrm{cn}^2 \mathrm{dn}^2}{\mathrm{sn}^2 (1 - \mathrm{sn}^2)^2} \approx 0.96$$
$$r = \frac{m_{\rm Pl}^2}{f^2} \frac{-8\mathrm{cn}^2 \mathrm{dn}^2}{\mathrm{sn}^2 (1 - \mathrm{sn}^2)^2} \lesssim 0.07$$

But not very illuminating...

5990

Introduction	Model	Prediction	Conclusions
000	00000	0000	0
Simplified po	otential		

For $mR = \mathcal{O}(10)$ the potential is approximately

$$V(\phi) \approx \Lambda^4 \tanh^2 \left(\frac{\phi}{2f}\right)$$

for $|\phi| < \pi F_{\phi} \approx 2m\pi Rf \approx \sqrt{2m\pi R} \left(\frac{f_5}{M_5}\right)^{3/2} m_{\text{Pl}}$

Half period may well be sub-Planckian for $f_5 \ll M_5$

Inflationary	prodictions		
000	00000	00000	0
Introduction	Model	Prediction	Conclusions

initiationally predictions

• Number of *e*-folds

$$N = \frac{1}{m_{\rm Pl}} \int_{\phi_e}^{\phi_i} \frac{d\phi}{\sqrt{2\epsilon}} \approx \left(\frac{f}{2m_{\rm Pl}}\right)^2 e^{\phi_i/f}$$

• Spectral index

$$n_{\mathscr{R}} - 1 = 1 - \frac{4[1 + \cosh(\phi_i/f)]\operatorname{csch}^2(\phi_i/f)}{(f/m_{\rm Pl})^2} \approx 1 - \frac{2}{N}$$

The same as many favoured models

Tensor-to-scalar ratio

$$r = \frac{32 \mathrm{csch}^2(\phi_i/f)}{(f/m_{\mathrm{Pl}})^2} \approx \frac{8}{N^2} \left(\frac{f}{m_{\mathrm{Pl}}}\right)^2$$

Compared to R^2 model, further suppressed by $(f/m_{\rm Pl})^2$ ・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Sac

Introduction	Model	Prediction	Conclusions
000	00000	00000	0

Parameter space

Natural cliff inflation

3

 Introduction
 Model
 Prediction
 Conclusions

 000
 00000
 00000
 0

Reheating after inflation

Anormalous coupling gives interaction bet inflaton and gauge fields

For fiducial values $F_{\phi} \sim 10^{-3} m_{\text{Pl}}$ and mR = 5, if SM lives at...

•
$$y = 0$$
: $T_{\rm reh} = \sqrt{\Gamma_{\phi} m_{\rm Pl}} \sim 10^{13} \, {\rm GeV}$

• $y = \pi R$: suppressed by $e^{-m\pi R} \sim 10^{-7}$ and $T_{\text{reh}} \sim 10^{6} \text{ GeV}$

Introduction	Model	Prediction	Conclusions
000	00000	00000	0

1 Introduction

2 Model

・ロト・日本・日本・日本・日本・日本

Natural cliff inflation

Jinn-Ouk Gong

Intro	du	cti	on
000			

Conclusions

- Realizing natural inflation concerns the value of f
- Setup
 - Zero mode of 5D angular field
 - Exponentially flat hilltop and cliff-like minimum
- Inflation
 - Simple analytic results for reasonable parameters
 - Sub-Planckian field excursion