Jason Leung

Motivation

SN ν fluence

Event spectrum

SN evolution

Probe NMF

Conclusion

Probing Neutrino Mass Hierarchy by the IBD and ν -p ES Events of Supernova Neutrinos in Liquid Scintillation Detectors

Jason Leung

Institute Of Physics NCTU

COSPA2017

Outline

Jason Leung

Motivation SN ν fluence Event spectrum SN evolution Probe NMH Conclusion

Motivation

2 Supernova neutrino fluence

3 $\bar{\nu}_e + p \rightarrow e^+ + n \& \nu + p \rightarrow \nu + p$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ ● の Q (2/15

- 4 Supernova evolution
- 5 Probe neutrino mass hierarchy

6 Conclusion

Motivation

Jason Leung

Motivation

- SN ν fluence
- Event spectrum
- SN evolutio
- Probe NMH

- SN ν primary fluence and MSW effect
- IBD : related to Neutrino Mass Hierarchy
- ν-p ES : independent of Neutrino Mass Hierarchy
- SN evolution (Define Accretion Phase & Cooling Phase luminosity ratio)

• Probe neutrino mass hierarchy

Supernova neutrino fluence

Jason Leung

Motivation SN ν fluence

Primary fluence

$$\frac{dF}{dE} = \sum_{\alpha} \frac{128}{3} \frac{\mathcal{E}_{\alpha}}{4\pi d^2} \frac{E^3}{\langle E_{\alpha} \rangle^5} e^{-\frac{4E}{\langle E_{\alpha} \rangle}}$$

(1)

<□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ = - の < ○ - 4/15

• Total energy
$${\cal E} = \sum_lpha {\cal E}_lpha pprox 3 imes 10^{53}$$
 erg

- 10 s duration
- 10 kpc
- Energy unit fix to MeV

Supernova neutrino fluence

Jason Leung

Motivation

SN ν fluence

Event spectrum

SN evolution

Probe NMH

Conclusion

MSW¹ : Normal Hierarchy

$$F_e = F_x^0 \tag{2}$$

$$F_{\bar{e}} = (1 - \bar{P}_{2e})F_{\bar{e}}^0 + \bar{P}_{2e}F_x^0$$
(3)

$$4F_{x} = F_{e}^{0} + \bar{P}_{2e}F_{\bar{e}}^{0} + (3 - \bar{P}_{2e})F_{x}^{0}$$
(4)

MSW : Inverted Hierarchy

$$F_{e} = P_{2e}F_{e}^{0} + (1 - P_{2e})F_{x}^{0}$$
(5)

$$F_{\bar{e}} = F_{x}^{0}$$
(6)

$$\overline{4F_x = (1 - P_{2e})F_e^0 + F_{\bar{e}}^0 + (2 + P_{2e})F_x^0}$$
(7)

 $F_{e}, F_{x} = e$ and $\mu \tau$ neutrino flux. $\bar{P}_{2e} \approx 0.3$

¹Kwang-Chang Lai et al., JCAP 1607 (2016) no.07, 039

Supernova neutrino fluence

Jason Leung

Motivation

SN ν fluence

Event spectrum

SN evolution

Probe NMI

Conclusion

MSW : Normal Hierarchy

$$F_{\bar{e}} = (1 - \bar{P}_{2e})F_{\bar{e}}^0 + \bar{P}_{2e}F_x^0$$
(8)

MSW : Inverted Hierarchy

$$F_{\bar{e}} = F_x^0$$

(9)

	Situation 1	Situation 2	 Total energy is
Avg. \mathcal{L}_{α} Frac.	$\mathcal{L}_x/\mathcal{L}_{\bar{e}} < 1$	$\mathcal{L}_x/\mathcal{L}_{\bar{e}}>1$	conserved
Result <i>F</i> _ē	F _{NH} F _{IH}	$F_{ m NH}^\prime < F_{ m NH} \ F_{ m IH}^\prime > F_{ m IH}$	 Related to SN evolution

$$ar{
u}_e + p
ightarrow e^+ + n \ \& \
u + p
ightarrow
u + p$$

Neutrino proton elastic scattering

Event number of ν -p ES The quenching function

- N_p in LS SN neutrino fluence $\frac{dF}{dE_{\nu}}$ $T_d(T_e) = \int_0^T \frac{dT}{1 + k_B \left\langle \frac{dT}{d\nu} \right\rangle + C \left\langle \frac{dT}{d\nu} \right\rangle^2}$ N_p in LS
- Differential cross section $\frac{2 d\sigma_{\nu p}}{dT_e}$ k_B : Birks constant
- Quenching function

Jason Leung

Event spectrum

C: 2nd order Birks constant

Detector	Mass [kton]	Density [g/cm ³]	Chemical comp.	N_p [10 ³¹]	k_B [cm/MeV]	C $[cm/MeV]^2$
Borexino	0.278	0.876	C_9H_{12}	1.7	0.01	_
KamLAND	0.697	0.77	$C_{12}H_{26}(80\%)C_9H_{12}(20\%)$	5.9	0.01	$2.73 imes10^{-5}$
SNO+	0.8	0.86	C ₆ H ₅ C ₁₂ H ₂₅	5.9	0.0073	-
LENA	44	0.863	C ₁₈ H ₃₀	330	0.01	-
JUNO	20	0.856	$C_6H_5C_{11}H_{23}$	145	0.00759	$2.05 imes 10^{-6}$

 $\bar{\nu}_e + p \rightarrow e^+ + n \& \nu + p \rightarrow \nu + p$

³JUNO Collaboration, J. Phys. G43 (2016) no.3, 030401

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ - ∽へで 8/15

 $\bar{\nu}_e + p \rightarrow e^+ + n \& \nu + p \rightarrow \nu + p$

 $\bar{\nu}_e + p \rightarrow e^+ + n \& \nu + p \rightarrow \nu + p$

Inverse Beta Decay

Jason Leung

Event number of IBD

- SN ν fluence
- Event spectrum
- SN evolutio
- Probe NMF
- Conclusion

- N_p in LS
- SN electron anti-neutrino fluence $\frac{dF_{\bar{e}}}{dE_{u}}$
- Differential cross section⁴ $\frac{d\sigma_{\text{IBD}}}{dT_d}$

Detector	Mass [kton]	$\begin{array}{c} \textbf{Density} \\ [g/cm^3] \end{array}$	Chemical comp.	N_p [10 ³¹]	k_B [cm/MeV]	C $[cm/MeV]^2$
Borexino	0.278	0.876	C_9H_{12}	1.7	0.01	-
KamLAND	0.697	0.77	C ₁₂ H ₂₆ (80%)C ₉ H ₁₂ (20%)	5.9	0.01	$2.73 imes10^{-5}$
SNO+	0.8	0.86	C ₆ H ₅ C ₁₂ H ₂₅	5.9	0.0073	-
LENA	44	0.863	C ₁₈ H ₃₀	330	0.01	-
JUNO	20	0.856	$C_6H_5C_{11}H_{23}$	145	0.00759	2.05×10^{-6}

⁴A. Strumia & F. Vissani, Phys. Lett. B564 (2003) 42-54

(2003) +2-3+
(□) + 4 □ + 4 □ + 4 □ + 10/15

 $\bar{\nu}_e + p \rightarrow e^+ + n \& \nu + p \rightarrow \nu + p$

Supernova evolution

Jason Leung

Motivation SN ν fluenc Event

SN evolution Probe NMH

Definition of AP and CP

Condition					
٩P	$\mathcal{L}_{ u_e} pprox \mathcal{L}_{ar{ u}_e} > \mathcal{L}_{ u_{ imes}}$				
ΞE	$\mathcal{L}_{ u_e} = \mathcal{L}_{ar{ u}_e} = \mathcal{L}_{ u_{ imes}}$				
CP	$\mathcal{L}_{ u_e} pprox \mathcal{L}_{ar{ u}_e} < \mathcal{L}_{ u_{ imes}}$				

	$\mathcal{L}_{ar{ u}_e}/\mathcal{L}_{ u_e}$	$\mathcal{L}_{ u_x}/\mathcal{L}_{ u_e}$
AP	1.00	0.80
EE	1.00	1.00
CP	1.00	1.14

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ の ○ 12/15

- SN evolve from AP \rightarrow CP
- $\mathcal{E}_{AP} \neq \mathcal{E}_{CP}$

Probe neutrino mass hierarchy

<u>Event Ratio⁵ R</u>

Motivation

Jason Leung

SN ν fluence

Event spectrum

SN evolution

Probe NMH

Conclusion

The event ratio R is defined as

$$R \equiv \frac{N_{\rm IBD}}{N_{\nu-p}} : \frac{(\text{no. of }\nu_{\bar{e}})}{(\text{no. of }\nu)} \Rightarrow (\text{fraction of }\nu_{\bar{e}})$$
(10)

- sensitive to neutrino mass hierarchy
- independent of total energy emission
- absolute value is not important
- AP \rightarrow CP \Rightarrow R \searrow in NH
- AP \rightarrow CP \Rightarrow **R** \nearrow in IH

⁵Kwang-Chang Lai et al., JCAP 1607 (2016) no.07, 039

Probe neutrino mass hierarchy

Jason Leung

Probe NMH

	Hierarchy	Phases	$N_{\nu-p}$	N_{IBD}	R
 JUNO detector 		AP	1759	5376	3.056
Threshold 0.2 Ma/	NH 12 14 16	EE	1820	4995	2.745
• Threshold $= 0.2$ likev			1853	4789	2.584
● R∖, in NH		AP	1759	5039	2.865
	IH 12 14 16	EE	1820	5459	2.999
• R/`in IH		CP	1853	5687	3.069

Hierarchy	Phases	$\mathbf{N}_{\nu \text{-}p}$	N _{IBD}	R	Hierarchy	Phases	$\mathbf{N}_{\nu-p}$	N _{IBD}	R
NH 12 15 18	AP	2447	5829	2.382	NH 10 15 24	AP	4424	6328	1.430
	CP	2548 2604	5427 5210	2.130 2.001		CP	4709 4863	5908 5773	1.207
IH 12 15 18	AP EE CP	2447 2548 2604	5631 6101 6355	2.301 2.394 2.440	IH 10 15 24	AP EE CP	4424 4709 4863	7252 7857 8184	1.639 1.669 1.683

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで 14/15

Conclusion

Jason Leung

- Motivation
- Event spectrum SN evolution Probe NMH
- For the normal hierarchy, event ratio *R* becomes smaller as neutrino emissions evolve from accretion phase to cooling phase, but it becomes larger for the inverted hierarchy.

◆□▶ ◆禄▶ ◆国▶ ◆国▶ 国 - 釣�や 15/15

 Neutrino mass hierarchy can therefore be probed by detecting IBD and ν-p ES events.