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Evidence of Dark Matter

• Galactic Rotation Curve 
• Gravitational Lensing 
• Large Scale Structure 
• CMB anisotropies,  
• …

2

All confirmed evidence  
indicates DM at least has  
gravitational interaction.

GR Lensing at Work 

SDSS J1004+4112  
HST AFT/WFC!

10"!

Abel 2218c Galaxy cluster 
gravitational lens"

M. Lindner MPIK ITEP Winter School 2014 11 

Allows to determine the 
total mass of lenses from 
observed lensing effects  
" missing mass  
" dark 

More dynamical Evidence: Large Scale Structure 

ITEP Winter School 2014 

Simulations of structure 
of the Universe. 
 

Input: 
- initial fluctuations 
- laws of gravity 
 
calculate the evolution of 
- structures 
- their power spectrum 
 
Compare to measures power spectrum:  
- only visible matter " mismatch  
- inclusion of dark matter " OK  

Millenium simulation"

M. Lindner MPIK 9 
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DM Scenarios
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  SM  DMGravity
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DM Scenarios
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  SM  DMGravity

New Interaction
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DM Scenarios
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  SM  DMGravity

New Interaction

Yong TANG(U.Tokyo)       Interacting DM and Cosmological Tensions                   SI

Weakly Interacting Massive Particle 

• Mass around ~100GeV 
• Coupling ~ 0.5 
• Correct relic abundance Ω~0.3 
• Searches for CDM 
• Collider qq > XXj
• Direct   Xq > Xq
• Indirect XX > qq

• Theoretically interesting
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Ways to detect Dark Matter 

M. Lindner MPIK ITEP Winter School 2014 5 

Direct detection

Indirect detection C
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DM Scenarios
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  SM  DMGravity

New Interaction
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What if only Gravity?
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  SM  DMGravity

• Gravitational interaction is 
very weak. 

• One may wonder whether 
DM can be produced. 

• We shall show gravity can 
be strong enough to play…
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Gravitational Contributions
• Non-Thermal (well-studied) 

• Expansion of cosmic background 
• QFT in curved spacetime 
• Vacuum Fluctuation 

• Bogoliubov transformation 
• Thermal scattering 

• EFT for E<<Mp

8

Y. Tang, Y.-L. Wu / Physics Letters B 774 (2017) 676–681 677

In this paper, we investigate the viable mass range for DM 
with spin 0, 1/2 and 1, produced by the gravitational annihi-
lation of particles in the thermal bath with various spins. We 
compute all the possible, general annihilation cross sections an-
alytically, including all the finite mass term. We find that for 
the production from particles in the thermal bath the abundance 
of DM is tightly related with the highest temperature Tmax af-
ter inflation, proportional to T 3

max/M3
P if its mass mX < Tmax and 

m3
X/M3

P exp [−2mX/Tmax] if mX > Tmax. We also discuss the effects 
from inflation dynamics and show that, gravitational annihilation 
from inflatons might be the dominant channel for scalar/vector 
DM production (there is a suppression factor for fermionic DM 
due to helicity selection) and interestingly has the same power 
dependence on Hubble parameter as production from vacuum fluc-
tuation.

This paper is organized as follows. In Sec. 1 we start with the 
standard Boltzmann equation to follow the cosmological evolution 
of particles and establish the convention and terminology for later 
discussions. Then in Sec. 3 we calculate the gravitational annihila-
tion cross section for different initial and final states with spin 0, 
1/2 and 1. Later in Sec. 4 we apply our calculated cross section to 
DM and investigate the viable mass range. In Sec. 5 we discuss the 
effects from chaotic inflation and show that inflaton’s contribution 
can be very important. Finally, we give the summary.

2. Boltzmann equation

To be self-contained, let us start with the standard Boltzmann 
equation in cosmology [15] for the evolution of number density n3
through the 2 ↔ 2 process,1 p1 + p2 ↔ p3 + p4,

ṅ3 + 3Hn3

≡ d
(
a3n3

)

a3dt

=
∫

d3 p1

(2π)32E1

d3 p2

(2π)32E2

d3 p3

(2π)32E3

d3 p4

(2π)32E4

× (2π)4δ4(p1 + p2 − p3 − p4) ×
∑

pol

[
f1 f2(1 ± f3)(1 ± f4)

∣∣M12→34|2

− f3 f4(1 ± f1)(1 ± f2)|M34→12
∣∣2]

, (2.1)

where a is the scalar factor, Hubble parameter H = ȧ/a, pi denote 
the spatial momenta, pi for 4-vector, M is the matrix element, f i
is the distribution for particle i without internal degree of free-
dom, +(−) sign in ± is for bosons (fermions) and 

∑
pol means the 

sum of all polarizations. For particles that were in thermal equilib-
rium, such as WIMP, we need to keep both terms in the bracket of 
Eq. (2.1). This is due to the cross symmetry M12→34 = M34→12
and f1 f2 is compatible to f3 f4 for Ei ∼ m3 where m3 is the mass 
for particle 3. In cases where f3,4 is much smaller than 1 and/or 
f1,2, we can neglect the second term and the above Boltzmann 
equation becomes

d
(
a3n3

)

a3dt
=

∫
f1d3 p1

(2π)32E1

f2d3 p2

(2π)32E2

×
[

d3 p3

(2π)32E3

d3 p4

(2π)32E4

1 Following the same formalism, processes with multiple initial or final states 
can also be included. These contributions could also be important unless they are 
suppressed by additional small couplings or phase space factors.

Fig. 1. Annihilation process for i → f , where particles i and f can be scalars S , 
fermions F (spin 1/2), massive vectors V and massless vectors γ . For massive par-
ticles, we always denote the initial states’mass as m and the final states’ as M . 
The double lines represent the graviton field, hµν . Arrows mean the directions of 
momenta. Note that although i and f might have the same spin, they have to be 
different particles to affect the number density in Boltzmann equation.

× (2π)4δ4(p1 + p2 − p3 − p4)
∑

pol

|M12→34|2
]

,

(2.2)

The term in the bracket can be replaced by 4F g1 g2σ12→34, where 
gi is the spin degree of freedom, σ ≡ σ12→34 is the cross section 
and F = [(p1 · p2)

2 − m2
1m2

2]1/2. So we have

d
(
a3n3

)

a3dt
=

∫
f1 g1d3 p1

(2π)3 E1

f2 g2d3 p2

(2π)3 E2
Fσ , (2.3)

Changing to the integration variables E1, E2 and s, we have

d3 p1d3 p2 = 4π2 E1 E2dE1dE2ds = 2π2 E1 E2dE+dE−ds, (2.4)

where E+ = E1 + E2, E− = E1 − E2, and s = (p1 + p2)
2. As will be 

shown in next section, throughout our discussion, we have m1 =
m2 = m and m3 = m4 = M and the integration range then can be 
simplified to

s ≥ max(4m2,4M2), E1 ≥ m, E2 ≥ m, E+ ≥
√

s,

|E−| ≤
√

1 − 4m2/s
√

E2
+ − s. (2.5)

So far, the discussions have been quite general and apply for 
other very weakly interacting particles as well, see Ref. [16] for a 
recent review. It is evident that the key part is to calculate the 
annihilation cross section σ . After that we can perform numer-
ical integration or analytic computation for some special cases. 
If f1,2 have quantum statistical distributions, like Fermi-Dirac or 
Bose–Einstein distributions (eE/T ± 1)−1, no compact analytic for-
mulas can be derived. However, for E > T , we can use approximate 
Maxwell–Boltzmann distribution, e−E/T , and then integrate over 
E− and E+ to get

d
(
a3n3

)

a3dt
= g2

1 T

32π4

∫
ds σ

√
s(s − 4m2)K1

(√
s

T

)
, (2.6)

where Ki is the modified Bessel function of the second kind with 
order i.

3. Annihilation cross section

In this section, we compute the annihilation cross section in 
the center-of-mass (CM) frame for various initial and final states 
in Fig. 1. Note that the initial particles are different from the final 
ones so that the process can change the number density and con-
tribute to Boltzmann equation, although in a broader context for 
other physics problems they can be the same. Since the cross sec-
tion is a Lorentz-invariant quantity, the results derived here will 
also be valid in other frames.

In effective field theory, the leading interactions between gravi-
ton and matter are described by

Lint =


2
hµ⌫T

µ⌫ ,

 =
p
32⇡G

nX / H3

Wu&Tang, 1604.04701, 1708.05138 
Gary,Sandora,Sloth&Palessandro,1511.03278,1709.09688

e.g. Ema, Jinno, Mukaida&Nakayama,
1502.02475,1604.08898 and refs. therein
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EFT in Einstein’s Gravity
• Einstein-Hilbert action 

• EFT for E<<Mp 

     Energy-Momentum Tensor
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In e↵ective field theory, the leading interactions between graviton and matter are described by

L
int

=


2
hµ⌫T

µ⌫ , (3.1)

where  =
p
32⇡G(G is the Newton’s constant), hµ⌫ is the graviton field and Tµ⌫ is the energy-momentum tensor for

matter fields. This term is linear on hµ⌫ but su�cient for our discussions in which less than 2 gravitons appear in
the processes. We shall use the harmonic gauge fixing condition for gravity so that the graviton’s propagator with
momentum p has the following form

Gµ⌫;⇢�(p) =
i

2p2
(⌘µ⇢⌘⌫� + ⌘µ�⌘⌫⇢ � ⌘µ⌫⌘⇢�) (3.2)

where ⌘µ⌫ is the metric for flat spacetime. Since we are considering the leading-order tree-level scattering processes,
we do not need to include higher-dimensional operators with more graviton hµ⌫ , renormalization e↵ects and ghost.

The symmetric energy-momentum tensors Tµ⌫ for complex scalar S, spin-1
2

Dirac fermion F , massive vector V and
massless vector � are listed in the following

Tµ⌫
S =� ⌘µ⌫@↵S†@↵S + ⌘µ⌫m2

SS
†S + @µS†@⌫S + @⌫S†@µS, (3.3)

Tµ⌫
F =� ⌘µ⌫

�
Fi/@F �mFFF

�
+

1

2
Fi�µ@⌫F +

1

2
Fi�⌫@µF

+
1

2
⌘µ⌫@↵

�
Fi�↵F

�
� 1

4
@µ

�
Fi�⌫F

�
� 1

4
@⌫

�
Fi�µF

�
, (3.4)

Tµ⌫
V =⌘µ⌫

✓
1

4
F↵�F↵� � 1

2
m2

V V
↵V↵

◆
�

�
Fµ↵F ⌫

↵ �m2

V V
µV ⌫

�
, (3.5)

Tµ⌫
� =

1

4
⌘µ⌫F↵�F↵� � Fµ↵F ⌫

↵. (3.6)

Tµ⌫ for real scalar � can easily be obtained by substituting S = (� + i')/
p
2. For scalar with nonminimal coupling

⇣S†SR we should add 2⇣(@µ@⌫ � ⌘µ⌫@↵@
↵)S†S. Then we can get the Feynman rules to do the calculation of Fig. 1.

To make the results as compact as possible, we extract the common factor for unpolarized collisions pi+p
¯i ! pf +p

¯f ,

� =
1

32⇡s (Sg2i )

|~pf |
|~pi|

Z
d cos ✓

X

pol

|M|2 ⌘ 4

32⇡s (Sg2i )

|~pf |
|~pi|

A, (3.7)

where gi is the degrees of freedom for initial state i, S is the symmetric factor (S = 2 for identical final states, for
example, real scalars, neutral gauge bosons, otherwise S = 1), |~pi| and |~pf | are the lengths of three-momentum for
initial and final states, respectively. As shown, M is the matrix element and we have defined A as the integration of
polarization-summed

P
|M|2 over the scattering angle ✓, with the 4 factor pulled out.

Note that the kinematic variables in CM frame for mi = m
¯i ⌘ m and mf = m

¯f ⌘ M , and

|~pi| =
q
E2

i �m2, |~pf | =
q

E2

f �M2, Ei,f =
p
s/2. (3.8)

After some tedious calculations, we obtain A for di↵erent processes of initial states with mass m and final ones with M
where both the initial and final states can be complex scalar S, fermion F (spin 1/2), massive vector V and massless
vector �. For processes involving final scalar S,

A (S ! S) =
7m4M4

30s2
� m2M2

30s

�
m2 +M2

�
,

+
1

40

�
m4 + 4m2M2 +M4

�
+

s

120

�
m2 +M2

�
+

s2

240
, (3.9)

A (F ! S) =� 7m4M4

15s2
� m2M2

60s
(M2 � 4m2)

+
1

60

�
2M4 + 3m2M2 � 3m4

�
� s

240
(4M2 �m2) +

s2

480
, (3.10)

A (V ! S) =
101m4M4

30s2
� m2M2

10s

�
11M2 +m2

�

+
1

120

�
19M4 + 76m2M2 + 49m4

�
� 7s

120

�
m2 +M2

�
+

s2

80
, (3.11)

A (� ! S) =
1

120

�
s� 4M2

�
2

, (3.12)

L =
p
�g


1

16⇡G
R+ Lm

�
S =

Z
L d

4
x ,

Lint =


2
hµ⌫T

µ⌫ ,

⇣S†SR ! 2⇣(@µ@⌫ � ⌘µ⌫@↵@
↵)S†S

Non-minimal coupling

Justified after inflation
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Annihilation Processes
• Boltzmann Equation 

• Reduced to 

• The core
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|~pi| =
p
s2/4�m2, |~pf | =

p
s2/4�M2

� =
4

32⇡s (Sg2i )

|~pf |
|~pi|

A

d
�
a3n

�

a3dt
=

g2T

32⇡4

Z
ds�

p
s(s� 4m2)K1

✓p
s

T

◆
,

ṅ+ 3Hn ⌘
d
�
a3n

�

a3dt
= C

col

Y. Tang, Y.-L. Wu / Physics Letters B 774 (2017) 676–681 677

In this paper, we investigate the viable mass range for DM 
with spin 0, 1/2 and 1, produced by the gravitational annihi-
lation of particles in the thermal bath with various spins. We 
compute all the possible, general annihilation cross sections an-
alytically, including all the finite mass term. We find that for 
the production from particles in the thermal bath the abundance 
of DM is tightly related with the highest temperature Tmax af-
ter inflation, proportional to T 3

max/M3
P if its mass mX < Tmax and 

m3
X/M3

P exp [−2mX/Tmax] if mX > Tmax. We also discuss the effects 
from inflation dynamics and show that, gravitational annihilation 
from inflatons might be the dominant channel for scalar/vector 
DM production (there is a suppression factor for fermionic DM 
due to helicity selection) and interestingly has the same power 
dependence on Hubble parameter as production from vacuum fluc-
tuation.

This paper is organized as follows. In Sec. 1 we start with the 
standard Boltzmann equation to follow the cosmological evolution 
of particles and establish the convention and terminology for later 
discussions. Then in Sec. 3 we calculate the gravitational annihila-
tion cross section for different initial and final states with spin 0, 
1/2 and 1. Later in Sec. 4 we apply our calculated cross section to 
DM and investigate the viable mass range. In Sec. 5 we discuss the 
effects from chaotic inflation and show that inflaton’s contribution 
can be very important. Finally, we give the summary.

2. Boltzmann equation

To be self-contained, let us start with the standard Boltzmann 
equation in cosmology [15] for the evolution of number density n3
through the 2 ↔ 2 process,1 p1 + p2 ↔ p3 + p4,

ṅ3 + 3Hn3

≡ d
(
a3n3

)

a3dt

=
∫

d3 p1

(2π)32E1

d3 p2

(2π)32E2

d3 p3

(2π)32E3

d3 p4

(2π)32E4

× (2π)4δ4(p1 + p2 − p3 − p4) ×
∑

pol

[
f1 f2(1 ± f3)(1 ± f4)

∣∣M12→34|2

− f3 f4(1 ± f1)(1 ± f2)|M34→12
∣∣2]

, (2.1)

where a is the scalar factor, Hubble parameter H = ȧ/a, pi denote 
the spatial momenta, pi for 4-vector, M is the matrix element, f i
is the distribution for particle i without internal degree of free-
dom, +(−) sign in ± is for bosons (fermions) and 

∑
pol means the 

sum of all polarizations. For particles that were in thermal equilib-
rium, such as WIMP, we need to keep both terms in the bracket of 
Eq. (2.1). This is due to the cross symmetry M12→34 = M34→12
and f1 f2 is compatible to f3 f4 for Ei ∼ m3 where m3 is the mass 
for particle 3. In cases where f3,4 is much smaller than 1 and/or 
f1,2, we can neglect the second term and the above Boltzmann 
equation becomes

d
(
a3n3

)

a3dt
=

∫
f1d3 p1

(2π)32E1

f2d3 p2

(2π)32E2

×
[

d3 p3

(2π)32E3

d3 p4

(2π)32E4

1 Following the same formalism, processes with multiple initial or final states 
can also be included. These contributions could also be important unless they are 
suppressed by additional small couplings or phase space factors.

Fig. 1. Annihilation process for i → f , where particles i and f can be scalars S , 
fermions F (spin 1/2), massive vectors V and massless vectors γ . For massive par-
ticles, we always denote the initial states’mass as m and the final states’ as M . 
The double lines represent the graviton field, hµν . Arrows mean the directions of 
momenta. Note that although i and f might have the same spin, they have to be 
different particles to affect the number density in Boltzmann equation.

× (2π)4δ4(p1 + p2 − p3 − p4)
∑

pol

|M12→34|2
]

,

(2.2)

The term in the bracket can be replaced by 4F g1 g2σ12→34, where 
gi is the spin degree of freedom, σ ≡ σ12→34 is the cross section 
and F = [(p1 · p2)

2 − m2
1m2

2]1/2. So we have

d
(
a3n3

)

a3dt
=

∫
f1 g1d3 p1

(2π)3 E1

f2 g2d3 p2

(2π)3 E2
Fσ , (2.3)

Changing to the integration variables E1, E2 and s, we have

d3 p1d3 p2 = 4π2 E1 E2dE1dE2ds = 2π2 E1 E2dE+dE−ds, (2.4)

where E+ = E1 + E2, E− = E1 − E2, and s = (p1 + p2)
2. As will be 

shown in next section, throughout our discussion, we have m1 =
m2 = m and m3 = m4 = M and the integration range then can be 
simplified to

s ≥ max(4m2,4M2), E1 ≥ m, E2 ≥ m, E+ ≥
√

s,

|E−| ≤
√

1 − 4m2/s
√

E2
+ − s. (2.5)

So far, the discussions have been quite general and apply for 
other very weakly interacting particles as well, see Ref. [16] for a 
recent review. It is evident that the key part is to calculate the 
annihilation cross section σ . After that we can perform numer-
ical integration or analytic computation for some special cases. 
If f1,2 have quantum statistical distributions, like Fermi-Dirac or 
Bose–Einstein distributions (eE/T ± 1)−1, no compact analytic for-
mulas can be derived. However, for E > T , we can use approximate 
Maxwell–Boltzmann distribution, e−E/T , and then integrate over 
E− and E+ to get

d
(
a3n3

)

a3dt
= g2

1 T

32π4

∫
ds σ

√
s(s − 4m2)K1

(√
s

T

)
, (2.6)

where Ki is the modified Bessel function of the second kind with 
order i.

3. Annihilation cross section

In this section, we compute the annihilation cross section in 
the center-of-mass (CM) frame for various initial and final states 
in Fig. 1. Note that the initial particles are different from the final 
ones so that the process can change the number density and con-
tribute to Boltzmann equation, although in a broader context for 
other physics problems they can be the same. Since the cross sec-
tion is a Lorentz-invariant quantity, the results derived here will 
also be valid in other frames.

In effective field theory, the leading interactions between gravi-
ton and matter are described by

� / 4s
Massless limit 

Wu&Tang 1604.04701
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Various Contributions
• Scalar

11
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In e↵ective field theory, the leading interactions between graviton and matter are described by

L
int

=


2
hµ⌫T

µ⌫ , (3.1)

where  =
p
32⇡G(G is the Newton’s constant), hµ⌫ is the graviton field and Tµ⌫ is the energy-momentum tensor for

matter fields. This term is linear on hµ⌫ but su�cient for our discussions in which less than 2 gravitons appear in
the processes. We shall use the harmonic gauge fixing condition for gravity so that the graviton’s propagator with
momentum p has the following form

Gµ⌫;⇢�(p) =
i

2p2
(⌘µ⇢⌘⌫� + ⌘µ�⌘⌫⇢ � ⌘µ⌫⌘⇢�) (3.2)

where ⌘µ⌫ is the metric for flat spacetime. Since we are considering the leading-order tree-level scattering processes,
we do not need to include higher-dimensional operators with more graviton hµ⌫ , renormalization e↵ects and ghost.

The symmetric energy-momentum tensors Tµ⌫ for complex scalar S, spin-1
2

Dirac fermion F , massive vector V and
massless vector � are listed in the following

Tµ⌫
S =� ⌘µ⌫@↵S†@↵S + ⌘µ⌫m2

SS
†S + @µS†@⌫S + @⌫S†@µS, (3.3)

Tµ⌫
F =� ⌘µ⌫

�
Fi/@F �mFFF

�
+

1

2
Fi�µ@⌫F +

1

2
Fi�⌫@µF

+
1

2
⌘µ⌫@↵

�
Fi�↵F

�
� 1

4
@µ

�
Fi�⌫F

�
� 1

4
@⌫

�
Fi�µF

�
, (3.4)

Tµ⌫
V =⌘µ⌫

✓
1

4
F↵�F↵� � 1

2
m2

V V
↵V↵

◆
�

�
Fµ↵F ⌫

↵ �m2

V V
µV ⌫

�
, (3.5)

Tµ⌫
� =

1

4
⌘µ⌫F↵�F↵� � Fµ↵F ⌫

↵. (3.6)

Tµ⌫ for real scalar � can easily be obtained by substituting S = (� + i')/
p
2. For scalar with nonminimal coupling

⇣S†SR we should add 2⇣(@µ@⌫ � ⌘µ⌫@↵@
↵)S†S. Then we can get the Feynman rules to do the calculation of Fig. 1.

To make the results as compact as possible, we extract the common factor for unpolarized collisions pi+p
¯i ! pf +p

¯f ,

� =
1

32⇡s (Sg2i )

|~pf |
|~pi|

Z
d cos ✓

X

pol

|M|2 ⌘ 4

32⇡s (Sg2i )

|~pf |
|~pi|

A, (3.7)

where gi is the degrees of freedom for initial state i, S is the symmetric factor (S = 2 for identical final states, for
example, real scalars, neutral gauge bosons, otherwise S = 1), |~pi| and |~pf | are the lengths of three-momentum for
initial and final states, respectively. As shown, M is the matrix element and we have defined A as the integration of
polarization-summed

P
|M|2 over the scattering angle ✓, with the 4 factor pulled out.

Note that the kinematic variables in CM frame for mi = m
¯i ⌘ m and mf = m

¯f ⌘ M , and

|~pi| =
q
E2

i �m2, |~pf | =
q

E2

f �M2, Ei,f =
p
s/2. (3.8)

After some tedious calculations, we obtain A for di↵erent processes of initial states with mass m and final ones with M
where both the initial and final states can be complex scalar S, fermion F (spin 1/2), massive vector V and massless
vector �. For processes involving final scalar S,

A (S ! S) =
7m4M4

30s2
� m2M2

30s

�
m2 +M2

�
,

+
1

40

�
m4 + 4m2M2 +M4

�
+

s

120

�
m2 +M2

�
+

s2

240
, (3.9)

A (F ! S) =� 7m4M4

15s2
� m2M2

60s
(M2 � 4m2)

+
1

60

�
2M4 + 3m2M2 � 3m4

�
� s

240
(4M2 �m2) +

s2

480
, (3.10)

A (V ! S) =
101m4M4

30s2
� m2M2

10s

�
11M2 +m2

�

+
1

120

�
19M4 + 76m2M2 + 49m4

�
� 7s

120

�
m2 +M2

�
+

s2

80
, (3.11)

A (� ! S) =
1

120

�
s� 4M2

�
2

, (3.12)
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Initial i(m)
Final f(M)

S F V �

S
M4
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+

sM2
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+

s2

240
1

480

�
s� 4M2

�
(s+ 6M2)

49M4

120
� 7sM2
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+

s2

80
s2
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F
1

480

�
s� 4M2

�
2

1
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�
s� 4M2

�
(3s+ 8M2)

13
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�
s� 4M2

�
2

s2

40

V
19M4
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� 7sM2
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+

s2
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1
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�
s� 4M2

�
(13s+ 38M2)

257M4
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� 37sM2
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+

29s2
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13s2
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�
1
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�
s� 4M2

�
2

1
120

�
s� 4M2

�
(3s+ 8M2)

13
120

�
s� 4M2

�
2

s2

10

TABLE I. A for the case m2/s ! 0 (initial states with mass m and final states with mass M). Note that the results are not
symmetric under i $ f since we do not take the limit M2/s ! 0.

for fermion

A (F ! F ) =
14m4M4

15s2
+

m2M2

30s

�
m2 +M2

�
,

� 1
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�
8m4 � 3m2M2 + 8M4

�
� s
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�
m2 +M2

�
+

s2
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, (3.13)

A (V ! F ) =� 101m4M4

15s2
+

m2M2

20s

�
44M2 �m2

�

� 1
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�
19M4 � 19m2M2 � 26m4

�
� s

240

�
7M2 + 52m2

�
+

13s2

480
, (3.14)

A (� ! F ) =
1

120

�
s� 4M2

�
(3s+ 8M2), (3.15)

and for vector

A (V ! V ) =
2983m4M4

30s2
� 293m2M2

10s

�
m2 +M2

�
,

+
1
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�
257m4 + 1188m2M2 + 257M4

�
� 37s

40

�
m2 +M2

�
+

29s2

240
, (3.16)

A (� ! V ) =
13

120

�
s� 4M2

�
2

, (3.17)

A (� ! �) =
s2

10
. (3.18)

Note that we can use the cross symmetry, A (f ! i) = A (i ! f) with interchanging m $ M , to get As for other
processes, such as A (S ! F ), A (S/F ! V ) and A (S/F/V ! �). In the case s � 4m2 and s � 4M2, we can neglect
the mass-dependent terms and get very concise As which are just proportional to s2.

The above results have shown consistencies under several checks. For example, A is gauge invariant when involving
massless vector � where we have explicitly checked in R⇠ gauge and the results are independent of gauge-fixing
parameter ⇠ in the Tµ⌫

� (⇠),

Tµ⌫
� (⇠) =

1

4
⌘µ⌫F↵�F↵� � Fµ↵F ⌫

↵ � 1

⇠
⌘µ⌫


@↵@��↵�� � 1

2
(@↵�↵)

2

�
+

1

⇠
(@µ@↵�↵�

⌫ + @⌫@↵�↵�
µ) . (3.19)

And the coe�cient of s2 term in A (V ! S) is three times as that in A (S ! S), which is due to three polarizations
of V . Furthermore, A (i ! f)s are symmetric over m and M when the initial and final states are the same, i = f .
For later convenience, we also tabulate the case m2 ⌧ s in Table. I. One can easily check that A (V ! f) =
A (S ! f) + A (� ! f). Interestingly, we notice that A (� ! f) = 4A (F ! f) which might be related with spin
structures in gravitational interactions.

IV. APPLICATION TO DARK MATTER

With the cross section in hand, we now proceed to compute the abundance for stable particles like DM X with mass
M = mX . In the absence of entropy production, we have d(a3s)/dt = 0, where s is the entropy density. Therefore,
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Note that we can use the cross symmetry, A (f ! i) = A (i ! f) with interchanging m $ M , to get As for other
processes, such as A (S ! F ), A (S/F ! V ) and A (S/F/V ! �). In the case s � 4m2 and s � 4M2, we can neglect
the mass-dependent terms and get very concise As which are just proportional to s2.

The above results have shown consistencies under several checks. For example, A is gauge invariant when involving
massless vector � where we have explicitly checked in R⇠ gauge and the results are independent of gauge-fixing
parameter ⇠ in the Tµ⌫

� (⇠),
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� (⇠) =
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+
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And the coe�cient of s2 term in A (V ! S) is three times as that in A (S ! S), which is due to three polarizations
of V . Furthermore, A (i ! f)s are symmetric over m and M when the initial and final states are the same, i = f .
For later convenience, we also tabulate the case m2 ⌧ s in Table. I. One can easily check that A (V ! f) =
A (S ! f) + A (� ! f). Interestingly, we notice that A (� ! f) = 4A (F ! f) which might be related with spin
structures in gravitational interactions.

IV. APPLICATION TO DARK MATTER

With the cross section in hand, we now proceed to compute the abundance for stable particles like DM X with mass
M = mX . In the absence of entropy production, we have d(a3s)/dt = 0, where s is the entropy density. Therefore,
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FIG. 2. Numeric illustration of the correlation between temperature T
max

and DM mass mX , in spin-0 (solid black line), spin- 1
2

(blue dashed line) and spin-1 (purple dot-dashed) cases. All these curves indicates that ⌦X ' 0.258. Going to region above
(below) the curve would increase (decrease) ⌦X . The gray dotted line marks mX = T

max

and on its left (right) side mX < T
max

(mX > T
max

).

we can rewrite the equation Eq. 2.3 in terms of a more convenient quantity, th yield YX ⌘ nX/s,

dYX

dt
=

g2
1

T

32⇡4

Z
ds�

p
s(s� 4m2)K

1

✓p
s

T

◆
. (4.1)

In the radiation dominant era, we have the following relations,

H2 =
8⇡G⇢r

3
⌘ 2⇢r

12
, ⇢r =

⇡2

30
g⇤T

4, dt = � dT

HT
,

where g⇤ is the total number of e↵ectively massless degrees of freedom. Integrate over temperature from the minimal
value to maximum one, we finally get

YX =

Z T
max

T
min

dT

HTs


g2
1

T

32⇡4

Z
ds�

p
s(s� 4m2)K

1

✓p
s

T

◆�
. (4.2)

The above result has negligible dependence on T
min

, so we can freely take T
min

as zero or the present temperature of
CMB. The yield YX is related with the observed energy fraction for DM ⌦X at present time,

⌦X =
⌦bmX

mpn�⌘
s
0

YX , (4.3)

where ⌦b is the energy density fractions of baryon, mp ' 1GeV is proton mass, n� is the number density of photon
today, s

0

is the total entropy density of photon and neutrino, and ⌘ ' 6⇥10�10 is baryon-to-photon ratio. Assuming a
minimal particle content in thermal bath, namely only SM, and the temperature is higher than electroweak symmetry
breaking, all SM particles are therefore massless and we can use the results in Table. I. Since our formalism is for
Dirac fermions, there is a factor of 1/2 for Weyl particles (neutrino in SM). Taking all these into account, we have 2
complex scalars, 45/2(1/2⇥ 3 + 1⇥ 3 + 2⇥ 3⇥ 3) Dirac fermions and 12(8 + 3 + 1) massless gauge bosons.

In Fig. 2, we illustrate the correlation between temperature T
max

and DM mass mX for fixed ⌦X ' 0.258 [17]
in several cases, by integrating Eq. (4.2) numerically. DM with spin zero, 1/2 and 1 are shown with solid, dashed
and dot-dashed curves, respectively. The gray dotted line indicates mX = T

max

, while its left (right) side marks
mX < T

max

(mX > T
max

). The turnover of these curves at mX = T
max

is due to the following reasons. When
mX < T

max

, ⌦X is proportional to 3T 3

max

and increasing mX would require smaller T
max

for fixed ⌦X , which is

⌦X = 0.258
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Table 2
A for the case s = 4m2(initial states with mass m and final states with mass M). As usual, m is the mass of initial particle and it is equal to zero for γ . For scalar as final 
state in the second row, we also include the non-mimimal coupling, ζ R S† S .

Initial i(m)

Final f (M) S F V γ

S
1

32

[
2(1 − 6ζ )m2 + M2]2 1

16
M2 (

m2 − M2) 1
32

(
4m4 − 4m2 M2 + 3M4)

0

F 0 0 0 0

V
1

32

(
12m4 − 20m2 M2 + 11M4)

m4 − 5m2 M2

16
− 11M4

16
1

32

(
140m4 + 148m2 M2 + 33M4)

4m4

γ 0 0 0 0

would require Tmax ∼ mX/10. In case Tmax ! 1012 GeV the pro-
duced X is negligible, we shall see in next section that inflation 
could then play an important role.

5. Effects of inflation dynamics

It is widely believed that in the very early universe there was 
an exponential expansion called inflation. After inflation, there was 
a short matter-dominant time as the inflation field φ oscillates 
around the potential minimum. Then inflatons decay into radia-
tion with decay width $φ and reheat the universe with a tem-
perature T R ∼ √

$φ M P . In the simplest approximation, we may 
just take Tmax = T R in our above discussion. However, realisti-
cally the effects from inflation are model-dependent since different 
inflationary scenarios could give various cosmological evolutions. 
More importantly, inflatons can also annihilate gravitationally into 
other particles and contribute the production. Here, we discuss 
some possible effects and only focus on the simplest chaotic in-
flation,2 for example, with quadratic potential, although our for-
malism might also apply for other cases.

For inflation field φ with canonical kinetic term and general 
potential V (φ), its energy-momentum tensor is given by

T µν
φ = − ηµν

[
1
2
∂αφ∂αφ − V (φ)

]
+ ∂µφ∂νφ. (5.1)

During inflation, we can use homogeneous field configuration φ(t)
for the background evolution and get the energy and pressure den-
sities

ρφ = 1
2
φ̇2 + V (φ), pφ = 1

2
φ̇2 − V (φ). (5.2)

Using the equation of motion for φ [15]

φ̈ + 3Hφ̇ + $φφ̇ + V ′(φ) = 0, (5.3)

where $φ is the decay width that closely connects to the reheating 
that inflatons decay into other particles and reheat the Universe, 
we can obtain the evolution equation for ρφ ,

ρ̇φ + 3Hφ̇2 = −$φφ̇2. (5.4)

Usually, averaging over several oscillations is performed so that 
one can use Virial theorem to replace φ̇2 with averaged ρ̄φ , and 
ρ̄φ just follows the evolution equation for non-relativistic matter. 
However, we do not perform such an average as we shall see im-
mediately that the dominant production from inflaton happens at 
the transition time, not at the oscillation time. To compute the 
particle production from inflaton annihilation, we treat inflatons 
as particles with zero spatial momentum, namely the distribution 
of φ particle is

2 Dark matter produced by vacuum fluctuation in inflation with Coleman-
Weinberg potential is recently studied in Ref. [19], whose starting point is different 
from ours.

f = nφ(2π)3δ3(p), nφ = ρφ/mφ, (5.5)

where mφ is the mass of inflaton. We are aware that inflation field 
can not be always treated as collection of inflaton particles, for 
example, if some particle couples to inflaton non-gravitationally, its 
production should be calculated by solving the equation of motion 
and regarding inflation field as classical background [20]. Since in 
our case there is no direct coupling between other particles and 
inflaton, we simply use Eq. (5.5) for our estimations. This reduces 
Eq. (2.3) to a very compact formula

d
(
a3nX

)

a3dt
=

n2
φ

m2
φ

Fσ =
ρ2

φ

m4
φ

Fσ . (5.6)

Note that generally Fσ at s = 4m2
φ does not vanish because the 

factors (s − 4m2
φ) in both F and |pi | of σ in Eq. (3.7) cancel with 

each other, unless there might be helicity/parity selection rules for 
different initial and final states so that the integrated squared ma-
trix elements A is identically zero. We can see several examples 
in the second row of Table 2 with scalar as the initial state. For in-
stance, for conformal coupled massless scalar (ζ = 1/6), massless 
fermions and vectors, A vanishes, which means that they are not 
produced by inflaton’s gravitational annihilation during inflation.

For massive scalars and vectors, we have Fσ ≃ κ4m4
φ/256π

and can roughly estimate how much particles are produced at in-
flation during a Hubble time interval, .t ∼ 1/H∗ ,

nX ≃
ρ2

φκ4

768π H∗
= 3H3

∗
16π

, (5.7)

where H∗ is the Hubble parameter around the transition era be-
tween inflation and oscillation time. Interestingly, the above for-
mula has the same power dependence on Hubble parameter as 
particle creation from vacuum fluctuations during inflation [20–25]
and oscillation [26,27]. Moreover, the feature that conformal cou-
pled massless scalars with ζ = 1/6, massless fermions and vectors 
are not produced by inflaton’s gravitational annihilation during in-
flation also agrees with the results for vacuum fluctuations. This 
might be just a coincidence, or imply some deep underlying con-
nection between two mechanisms, which however is beyond our 
scope here. In some sense the calculation with non-minimal cou-
pling ζ serves as additional check of our computation.

To get the yield, take H∗ = mφ and assume instantaneous re-
heating, we have Tmax ≃ T R = √

$φ M P and

Y X ≃ H∗
M2

P

T R ≃ mφ

M P

(
$φ

M P

)1/2

. (5.8)

From the above estimations, we can also learn that gravitational 
annihilation from inflatons might be dominant over the contribu-
tions from thermalized particles after reheating since the later one 
goes like T 3

R/M3
P .

From Fig. 2, it is obvious that for Tmax ! 1012 GeV the ther-
mally produced X is negligible. On the other hand, annihilation 
from inflations could still produce X too abundantly for large mφ , 
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mediately that the dominant production from inflaton happens at 
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where mφ is the mass of inflaton. We are aware that inflation field 
can not be always treated as collection of inflaton particles, for 
example, if some particle couples to inflaton non-gravitationally, its 
production should be calculated by solving the equation of motion 
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flation also agrees with the results for vacuum fluctuations. This 
might be just a coincidence, or imply some deep underlying con-
nection between two mechanisms, which however is beyond our 
scope here. In some sense the calculation with non-minimal cou-
pling ζ serves as additional check of our computation.

To get the yield, take H∗ = mφ and assume instantaneous re-
heating, we have Tmax ≃ T R = √

$φ M P and

Y X ≃ H∗
M2

P

T R ≃ mφ

M P

(
$φ

M P

)1/2

. (5.8)

From the above estimations, we can also learn that gravitational 
annihilation from inflatons might be dominant over the contribu-
tions from thermalized particles after reheating since the later one 
goes like T 3

R/M3
P .

From Fig. 2, it is obvious that for Tmax ! 1012 GeV the ther-
mally produced X is negligible. On the other hand, annihilation 
from inflations could still produce X too abundantly for large mφ , 

V (�) =
1

2
m2

��
2

reheating
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In this paper, we investigate the viable mass range for DM 
with spin 0, 1/2 and 1, produced by the gravitational annihi-
lation of particles in the thermal bath with various spins. We 
compute all the possible, general annihilation cross sections an-
alytically, including all the finite mass term. We find that for 
the production from particles in the thermal bath the abundance 
of DM is tightly related with the highest temperature Tmax af-
ter inflation, proportional to T 3

max/M3
P if its mass mX < Tmax and 

m3
X/M3

P exp [−2mX/Tmax] if mX > Tmax. We also discuss the effects 
from inflation dynamics and show that, gravitational annihilation 
from inflatons might be the dominant channel for scalar/vector 
DM production (there is a suppression factor for fermionic DM 
due to helicity selection) and interestingly has the same power 
dependence on Hubble parameter as production from vacuum fluc-
tuation.

This paper is organized as follows. In Sec. 1 we start with the 
standard Boltzmann equation to follow the cosmological evolution 
of particles and establish the convention and terminology for later 
discussions. Then in Sec. 3 we calculate the gravitational annihila-
tion cross section for different initial and final states with spin 0, 
1/2 and 1. Later in Sec. 4 we apply our calculated cross section to 
DM and investigate the viable mass range. In Sec. 5 we discuss the 
effects from chaotic inflation and show that inflaton’s contribution 
can be very important. Finally, we give the summary.

2. Boltzmann equation

To be self-contained, let us start with the standard Boltzmann 
equation in cosmology [15] for the evolution of number density n3
through the 2 ↔ 2 process,1 p1 + p2 ↔ p3 + p4,

ṅ3 + 3Hn3

≡ d
(
a3n3

)

a3dt

=
∫

d3 p1

(2π)32E1

d3 p2

(2π)32E2

d3 p3

(2π)32E3

d3 p4

(2π)32E4

× (2π)4δ4(p1 + p2 − p3 − p4) ×
∑

pol

[
f1 f2(1 ± f3)(1 ± f4)

∣∣M12→34|2

− f3 f4(1 ± f1)(1 ± f2)|M34→12
∣∣2]

, (2.1)

where a is the scalar factor, Hubble parameter H = ȧ/a, pi denote 
the spatial momenta, pi for 4-vector, M is the matrix element, f i
is the distribution for particle i without internal degree of free-
dom, +(−) sign in ± is for bosons (fermions) and 

∑
pol means the 

sum of all polarizations. For particles that were in thermal equilib-
rium, such as WIMP, we need to keep both terms in the bracket of 
Eq. (2.1). This is due to the cross symmetry M12→34 = M34→12
and f1 f2 is compatible to f3 f4 for Ei ∼ m3 where m3 is the mass 
for particle 3. In cases where f3,4 is much smaller than 1 and/or 
f1,2, we can neglect the second term and the above Boltzmann 
equation becomes

d
(
a3n3

)

a3dt
=

∫
f1d3 p1

(2π)32E1

f2d3 p2

(2π)32E2

×
[

d3 p3

(2π)32E3

d3 p4

(2π)32E4

1 Following the same formalism, processes with multiple initial or final states 
can also be included. These contributions could also be important unless they are 
suppressed by additional small couplings or phase space factors.

Fig. 1. Annihilation process for i → f , where particles i and f can be scalars S , 
fermions F (spin 1/2), massive vectors V and massless vectors γ . For massive par-
ticles, we always denote the initial states’mass as m and the final states’ as M . 
The double lines represent the graviton field, hµν . Arrows mean the directions of 
momenta. Note that although i and f might have the same spin, they have to be 
different particles to affect the number density in Boltzmann equation.

× (2π)4δ4(p1 + p2 − p3 − p4)
∑

pol

|M12→34|2
]

,

(2.2)

The term in the bracket can be replaced by 4F g1 g2σ12→34, where 
gi is the spin degree of freedom, σ ≡ σ12→34 is the cross section 
and F = [(p1 · p2)

2 − m2
1m2

2]1/2. So we have

d
(
a3n3

)

a3dt
=

∫
f1 g1d3 p1

(2π)3 E1

f2 g2d3 p2

(2π)3 E2
Fσ , (2.3)

Changing to the integration variables E1, E2 and s, we have

d3 p1d3 p2 = 4π2 E1 E2dE1dE2ds = 2π2 E1 E2dE+dE−ds, (2.4)

where E+ = E1 + E2, E− = E1 − E2, and s = (p1 + p2)
2. As will be 

shown in next section, throughout our discussion, we have m1 =
m2 = m and m3 = m4 = M and the integration range then can be 
simplified to

s ≥ max(4m2,4M2), E1 ≥ m, E2 ≥ m, E+ ≥
√

s,

|E−| ≤
√

1 − 4m2/s
√

E2
+ − s. (2.5)

So far, the discussions have been quite general and apply for 
other very weakly interacting particles as well, see Ref. [16] for a 
recent review. It is evident that the key part is to calculate the 
annihilation cross section σ . After that we can perform numer-
ical integration or analytic computation for some special cases. 
If f1,2 have quantum statistical distributions, like Fermi-Dirac or 
Bose–Einstein distributions (eE/T ± 1)−1, no compact analytic for-
mulas can be derived. However, for E > T , we can use approximate 
Maxwell–Boltzmann distribution, e−E/T , and then integrate over 
E− and E+ to get

d
(
a3n3

)

a3dt
= g2

1 T

32π4

∫
ds σ

√
s(s − 4m2)K1

(√
s

T

)
, (2.6)

where Ki is the modified Bessel function of the second kind with 
order i.

3. Annihilation cross section

In this section, we compute the annihilation cross section in 
the center-of-mass (CM) frame for various initial and final states 
in Fig. 1. Note that the initial particles are different from the final 
ones so that the process can change the number density and con-
tribute to Boltzmann equation, although in a broader context for 
other physics problems they can be the same. Since the cross sec-
tion is a Lorentz-invariant quantity, the results derived here will 
also be valid in other frames.

In effective field theory, the leading interactions between gravi-
ton and matter are described by

�

�

1

16
M2

�
m2 �M2

�

1

32

�
4m4 � 4m2M2 + 3M4

�

0

� =
4

32⇡s (Sg2i )

|~pf |
|~pi|

A

A =
1

32

⇥
2(1� 6⇣)m2 +M2

⇤2

m = m� M = MX

X

X

helicity suppression
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Fig. 3. Contour !X ≃ 0.258 on the reheating temperature T R and DM mass mX , in 
spin-0 (solid black line), spin- 1

2 (blue dashed line) and spin-1 (purple dot-dashed) 
cases. We have used mφ ≃ 1015 GeV as example. Spin-0 coincides with spin-1 case 
except in the high mass regime when mX is close to mφ , which can be easily un-
derstood from A in Table 2. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.)

unless mX and/or #φ is small enough, for instance, mX ! 1 TeV
for #φ ∼ 10−9mφ ≃ 10−14 M P . However, for massive fermions there 
would be a suppression factor m2

X/m2
φ from the annihilation cross 

section. This feature is in sharp contrast with the contributions 
from thermalized particles discussed in previous section where 
production for particles with different spins are at the same or-
der. In Fig. 3, we show how the contour !X = 0.258 goes in the 
mX –T R plane for spin-0, 1/2 and 1 with mφ = 1015 GeV and 
T R ! 1012 GeV as an example. One can easily see the dramatic 
difference discussed just above between spin-1/2 and spin-0/spin-
1, which shows that generally spin-0/1 DM would require much 
lower reheating temperature or lighter mass. We also notice that 
spin-0 coincides with spin-1 case except in the high mass regime 
when mX is close to mφ , which can be easily understood from A
in Table 2 because the longitude mode dominates in the high en-
ergy limit.

6. Summary

We have investigated the particle production from gravitational 
annihilation of thermal particles in the very early universe. In 
the case that dark matter (DM) particle might only have gravi-
tational interaction, we have calculated the relic abundance and 
the possible viable mass range for DM with spin 0, 1/2 and 1. 
We have computed the analytical cross section for general grav-
itational annihilation processes through a graviton. DM could be 
produced by gravitational annihilation of all other particles in the 
thermal path after inflation or inflatons during inflation. The first 
contribution crucially depends on the highest temperature Tmax
after inflation, proportional to T 3

max/M3
P if DM mass mX < Tmax

and m3
X/M3

P exp [−2mX/Tmax] if mX > Tmax. Particles with differ-
ent spins produced by thermal bath are at similar order and can 
give the correct abundance for DM with mass between TeV and 
1016 GeV. While the second contribution from inflaton depends 
on the inflation scale, reheating temperature and also the spin of 
DM (spin 1/2 case is suppressed due to helicity selection, com-
pared with scalar and vector particles). We have shown that in 
simplest chaotic inflation model the contribution from inflaton’s 
gravitational annihilation could be the dominant production mech-
anism for stable particles like DM.

Note Added: While we were finalizing the manuscript, a preprint 
[28] appeared, which discussed the particle production from Higgs 
portal due to effective operators suppressed by Planck scale.
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Table 2
A for the case s = 4m2(initial states with mass m and final states with mass M). As usual, m is the mass of initial particle and it is equal to zero for γ . For scalar as final 
state in the second row, we also include the non-mimimal coupling, ζ R S† S .

Initial i(m)

Final f (M) S F V γ

S
1

32

[
2(1 − 6ζ )m2 + M2]2 1

16
M2 (

m2 − M2) 1
32

(
4m4 − 4m2 M2 + 3M4)

0

F 0 0 0 0

V
1

32

(
12m4 − 20m2 M2 + 11M4)

m4 − 5m2 M2

16
− 11M4

16
1

32

(
140m4 + 148m2 M2 + 33M4)

4m4

γ 0 0 0 0

would require Tmax ∼ mX/10. In case Tmax ! 1012 GeV the pro-
duced X is negligible, we shall see in next section that inflation 
could then play an important role.

5. Effects of inflation dynamics

It is widely believed that in the very early universe there was 
an exponential expansion called inflation. After inflation, there was 
a short matter-dominant time as the inflation field φ oscillates 
around the potential minimum. Then inflatons decay into radia-
tion with decay width $φ and reheat the universe with a tem-
perature T R ∼ √

$φ M P . In the simplest approximation, we may 
just take Tmax = T R in our above discussion. However, realisti-
cally the effects from inflation are model-dependent since different 
inflationary scenarios could give various cosmological evolutions. 
More importantly, inflatons can also annihilate gravitationally into 
other particles and contribute the production. Here, we discuss 
some possible effects and only focus on the simplest chaotic in-
flation,2 for example, with quadratic potential, although our for-
malism might also apply for other cases.

For inflation field φ with canonical kinetic term and general 
potential V (φ), its energy-momentum tensor is given by

T µν
φ = − ηµν

[
1
2
∂αφ∂αφ − V (φ)

]
+ ∂µφ∂νφ. (5.1)

During inflation, we can use homogeneous field configuration φ(t)
for the background evolution and get the energy and pressure den-
sities

ρφ = 1
2
φ̇2 + V (φ), pφ = 1

2
φ̇2 − V (φ). (5.2)

Using the equation of motion for φ [15]

φ̈ + 3Hφ̇ + $φφ̇ + V ′(φ) = 0, (5.3)

where $φ is the decay width that closely connects to the reheating 
that inflatons decay into other particles and reheat the Universe, 
we can obtain the evolution equation for ρφ ,

ρ̇φ + 3Hφ̇2 = −$φφ̇2. (5.4)

Usually, averaging over several oscillations is performed so that 
one can use Virial theorem to replace φ̇2 with averaged ρ̄φ , and 
ρ̄φ just follows the evolution equation for non-relativistic matter. 
However, we do not perform such an average as we shall see im-
mediately that the dominant production from inflaton happens at 
the transition time, not at the oscillation time. To compute the 
particle production from inflaton annihilation, we treat inflatons 
as particles with zero spatial momentum, namely the distribution 
of φ particle is

2 Dark matter produced by vacuum fluctuation in inflation with Coleman-
Weinberg potential is recently studied in Ref. [19], whose starting point is different 
from ours.

f = nφ(2π)3δ3(p), nφ = ρφ/mφ, (5.5)

where mφ is the mass of inflaton. We are aware that inflation field 
can not be always treated as collection of inflaton particles, for 
example, if some particle couples to inflaton non-gravitationally, its 
production should be calculated by solving the equation of motion 
and regarding inflation field as classical background [20]. Since in 
our case there is no direct coupling between other particles and 
inflaton, we simply use Eq. (5.5) for our estimations. This reduces 
Eq. (2.3) to a very compact formula

d
(
a3nX

)

a3dt
=

n2
φ

m2
φ

Fσ =
ρ2

φ

m4
φ

Fσ . (5.6)

Note that generally Fσ at s = 4m2
φ does not vanish because the 

factors (s − 4m2
φ) in both F and |pi | of σ in Eq. (3.7) cancel with 

each other, unless there might be helicity/parity selection rules for 
different initial and final states so that the integrated squared ma-
trix elements A is identically zero. We can see several examples 
in the second row of Table 2 with scalar as the initial state. For in-
stance, for conformal coupled massless scalar (ζ = 1/6), massless 
fermions and vectors, A vanishes, which means that they are not 
produced by inflaton’s gravitational annihilation during inflation.

For massive scalars and vectors, we have Fσ ≃ κ4m4
φ/256π

and can roughly estimate how much particles are produced at in-
flation during a Hubble time interval, .t ∼ 1/H∗ ,

nX ≃
ρ2

φκ4

768π H∗
= 3H3

∗
16π

, (5.7)

where H∗ is the Hubble parameter around the transition era be-
tween inflation and oscillation time. Interestingly, the above for-
mula has the same power dependence on Hubble parameter as 
particle creation from vacuum fluctuations during inflation [20–25]
and oscillation [26,27]. Moreover, the feature that conformal cou-
pled massless scalars with ζ = 1/6, massless fermions and vectors 
are not produced by inflaton’s gravitational annihilation during in-
flation also agrees with the results for vacuum fluctuations. This 
might be just a coincidence, or imply some deep underlying con-
nection between two mechanisms, which however is beyond our 
scope here. In some sense the calculation with non-minimal cou-
pling ζ serves as additional check of our computation.

To get the yield, take H∗ = mφ and assume instantaneous re-
heating, we have Tmax ≃ T R = √

$φ M P and

Y X ≃ H∗
M2

P

T R ≃ mφ

M P

(
$φ

M P

)1/2

. (5.8)

From the above estimations, we can also learn that gravitational 
annihilation from inflatons might be dominant over the contribu-
tions from thermalized particles after reheating since the later one 
goes like T 3

R/M3
P .

From Fig. 2, it is obvious that for Tmax ! 1012 GeV the ther-
mally produced X is negligible. On the other hand, annihilation 
from inflations could still produce X too abundantly for large mφ , 

M2
f /m

2
�
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with prefactor κ2µXm3
X/16π2. These two operators could arise 

from covariant term 
√−g X R after renormalization and using 

equation of motion for X .
We are now in a position to discuss the connections between 

GDM and SM particles. The Lagrangian can be written collectively 
as

L = √−g
[

R
16πG

+ 1
2

gµν∂µ X∂ν X − V (X)

]
+ LSM,

LSM√−g
=

[
ψ̄(i/D − mψ )ψ − 1

4
Fµν F µν − 1√

2
(yψ̄ψφ + h.c.)

+ 1
2

DµφDµφ − V(φ)

]
, (4.6)

where D is the covariant derivative, and in the second line, terms 
in the brackets correspond to fermion, gauge, Yukawa interaction 
and Higgs terms, respectively. φ is the physical Higgs boson mφ ≃
125 GeV. Similarly, we can get effective operators like

m2
φ X2φ2, X2 Fµν F µν , y X2ψ̄ψφ, X2ψ̄ i/Dψ, ...

with a common factor κ4m2
X/16π2. Again if µX ≠ 0 operators that 

induce DM decay would also arise,

Xψ̄ i/Dψ, X Fµν F µν , X DµφDµφ, ...,

with a common factor κ4µXm3
X/256π4.

5. Signatures of GDM

Now we discuss the possible signatures of GDM. If Z X
2 symme-

try is not broken, DM X is stable but can pair-annihilate into other 
particles. The differential flux for particle i is given by

d'i

dE
∼ 1

2
⟨σ v⟩
m2

X

dNi

dE

rc∫

0

drρ2 (r) , (5.1)

where ⟨σ v⟩ ∼ κ4m2
X is averaged annihilation cross section, dNi/dE

is energy spectrum for particle i, r is the distance to galaxy cen-
ter, rc ∼ 20 kpc for Milky Way and ρ ∼ GeV/cm3 is DM density. 
We estimate the total flux is around 10−42 cm−2 s−1, which is in-
dependent of the DM mass. This flux seems too small to be probed 
by any known techniques. For example, current gamma-ray exper-
iments are only sensitive to flux down to 10−4 cm−2 s−1 for TeV 
photons [11]. It is therefore necessary to look for exotic astrophys-
ical compact objects with high DM density ρ ! 1020 GeV/cm3, 
which might not be so surprising since we have already known the 
nucleon density can be as high as 1030 GeV/cm3 in white dwarf 
stars and 1038 GeV/cm3 in neutron stars, respectively.

When Z X
2 symmetry is broken for µX ≠ 0, DM X can decay. 

The lifetime of X should be longer than the age of Universe, which 
puts a constraint on its dominant decay width *h

X ,

mX

32π

[
µXm2

X

16π2M2
P

]2

" t−1
U or mX " 10−11µ

− 2
5

X M P . (5.2)

If µX ≃ 1, the upper bound for mX is 107 GeV. The resulting flux 
is estimated as [12]

d'i

dE
∼ *i

X

mX

dNi

dE

rc∫

0

drρ (r) . (5.3)

Then the total flux of energetic graviton or high-frequency grav-
itational wave would be around 10−3 cm−2 s−1 × µ2

X × (mX/

Fig. 2. Effect on CMB temperature anisotropy from decaying DM X , illustrated with 
*X ∼ 0.1t−1

U .

Fig. 3. Illustrations of spectra for p, e±, γ , ν from X ’s decay with mX ≫ TeV. 
A gamma-line component is presented at high end-point.

107 GeV)4. So far no experiment searches for gravitons with such 
high energies.

However, decay of DM can also change the evolution of our 
late Universe by decreasing the matter component and increasing 
radiation part, which can be probed by CMB with enhanced late 
integrated Sachs–Wolfe effect at large scale or low l, as shown in 
Fig. 2. Current bound on decaying DM is *X " 0.1t−1

U [13].
GDM can also decay into SM particles, such as X → φφ, γ γ ,

Z Z , W W , gg, ψψ̄ . The partial decay width can be estimated as

*SM
X ≃ mX

32π

[
µXm4

X

256π4M4
P

]2

∼
[

m2
X

16π2M2
P

]2

*h
X . (5.4)

For mX ≫ TeV, we also calculate the decay branch ratios

Bφφ : Bγ γ /Z Z : BW W : Bgg : Bψ̄ψ ≃ 1 : 1 : 2 : 8 :
16m2

ψ Nc

m2
X

,

where Nc = 1, 3 for leptons and quarks, respectively. We then can 
make predictions for the spectra shapes of p, e±, γ , ν from X de-
cay, as shown in Fig. 3. Gamma line is also produced with energy 
E = mX/2. Unfortunately, the fluxes for SM particles are highly 
suppressed at least by a factor of 10−48 for mX " 107 GeV, com-
pared to graviton flux. These fluxes would be too small for searches 
in near future unless there are exotic astrophysical objects with 
very high density.
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with prefactor κ2µXm3
X/16π2. These two operators could arise 

from covariant term 
√−g X R after renormalization and using 

equation of motion for X .
We are now in a position to discuss the connections between 

GDM and SM particles. The Lagrangian can be written collectively 
as

L = √−g
[

R
16πG

+ 1
2

gµν∂µ X∂ν X − V (X)

]
+ LSM,

LSM√−g
=

[
ψ̄(i/D − mψ )ψ − 1

4
Fµν F µν − 1√

2
(yψ̄ψφ + h.c.)

+ 1
2

DµφDµφ − V(φ)

]
, (4.6)

where D is the covariant derivative, and in the second line, terms 
in the brackets correspond to fermion, gauge, Yukawa interaction 
and Higgs terms, respectively. φ is the physical Higgs boson mφ ≃
125 GeV. Similarly, we can get effective operators like

m2
φ X2φ2, X2 Fµν F µν , y X2ψ̄ψφ, X2ψ̄ i/Dψ, ...

with a common factor κ4m2
X/16π2. Again if µX ≠ 0 operators that 

induce DM decay would also arise,

Xψ̄ i/Dψ, X Fµν F µν , X DµφDµφ, ...,

with a common factor κ4µXm3
X/256π4.

5. Signatures of GDM

Now we discuss the possible signatures of GDM. If Z X
2 symme-

try is not broken, DM X is stable but can pair-annihilate into other 
particles. The differential flux for particle i is given by

d'i

dE
∼ 1

2
⟨σ v⟩
m2

X

dNi

dE

rc∫

0

drρ2 (r) , (5.1)

where ⟨σ v⟩ ∼ κ4m2
X is averaged annihilation cross section, dNi/dE

is energy spectrum for particle i, r is the distance to galaxy cen-
ter, rc ∼ 20 kpc for Milky Way and ρ ∼ GeV/cm3 is DM density. 
We estimate the total flux is around 10−42 cm−2 s−1, which is in-
dependent of the DM mass. This flux seems too small to be probed 
by any known techniques. For example, current gamma-ray exper-
iments are only sensitive to flux down to 10−4 cm−2 s−1 for TeV 
photons [11]. It is therefore necessary to look for exotic astrophys-
ical compact objects with high DM density ρ ! 1020 GeV/cm3, 
which might not be so surprising since we have already known the 
nucleon density can be as high as 1030 GeV/cm3 in white dwarf 
stars and 1038 GeV/cm3 in neutron stars, respectively.

When Z X
2 symmetry is broken for µX ≠ 0, DM X can decay. 

The lifetime of X should be longer than the age of Universe, which 
puts a constraint on its dominant decay width *h

X ,

mX

32π

[
µXm2

X

16π2M2
P

]2

" t−1
U or mX " 10−11µ

− 2
5

X M P . (5.2)

If µX ≃ 1, the upper bound for mX is 107 GeV. The resulting flux 
is estimated as [12]

d'i

dE
∼ *i

X

mX

dNi

dE

rc∫

0

drρ (r) . (5.3)

Then the total flux of energetic graviton or high-frequency grav-
itational wave would be around 10−3 cm−2 s−1 × µ2

X × (mX/

Fig. 2. Effect on CMB temperature anisotropy from decaying DM X , illustrated with 
*X ∼ 0.1t−1

U .

Fig. 3. Illustrations of spectra for p, e±, γ , ν from X ’s decay with mX ≫ TeV. 
A gamma-line component is presented at high end-point.

107 GeV)4. So far no experiment searches for gravitons with such 
high energies.

However, decay of DM can also change the evolution of our 
late Universe by decreasing the matter component and increasing 
radiation part, which can be probed by CMB with enhanced late 
integrated Sachs–Wolfe effect at large scale or low l, as shown in 
Fig. 2. Current bound on decaying DM is *X " 0.1t−1

U [13].
GDM can also decay into SM particles, such as X → φφ, γ γ ,

Z Z , W W , gg, ψψ̄ . The partial decay width can be estimated as

*SM
X ≃ mX

32π

[
µXm4

X

256π4M4
P

]2

∼
[

m2
X

16π2M2
P

]2

*h
X . (5.4)

For mX ≫ TeV, we also calculate the decay branch ratios

Bφφ : Bγ γ /Z Z : BW W : Bgg : Bψ̄ψ ≃ 1 : 1 : 2 : 8 :
16m2

ψ Nc

m2
X

,

where Nc = 1, 3 for leptons and quarks, respectively. We then can 
make predictions for the spectra shapes of p, e±, γ , ν from X de-
cay, as shown in Fig. 3. Gamma line is also produced with energy 
E = mX/2. Unfortunately, the fluxes for SM particles are highly 
suppressed at least by a factor of 10−48 for mX " 107 GeV, com-
pared to graviton flux. These fluxes would be too small for searches 
in near future unless there are exotic astrophysical objects with 
very high density.
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Summary
• Gravitational contributions to dark matter 

production can be important for non-WIMP case 
• We consider the contribution due to thermal SM 

particles’ gravitational annihilation 
• Inflation plays two important roles 

• Reheating temperature 
• Inflaton’s gravitational annihilation 

• Possible astrophysical signatures if DM decay.
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Thanks for your attention.
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