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OVERVIEW
• “Warm” Dark Matter: m~keV

- signal may be seen; 3.5 keV X-ray observation (7 keV DM decay).
- Lyman-alpha forest constraints: pushing keV DM to heavier region.

• “Less” Warm Dark Matter

- Fixing DM mass 7 keV,
- Non-standard DM production; “Colder” warm dark matter,
- Entropy injection also helps.

• Light Axino DM

- keV scale DM
- Freeze-in Production
- Entropy from “Saxion”



AXINO
• Supersymmetry+Peccei-Quinn Symmetry:

- SUSY solves the gauge hierarchy & PQ solves strong CP
- Dark Matter candidates: neutralino & axion

• Axino Dark Matter:

- fermionic SUSY partner of axion
- becomes massive with SUSY breaking
- keV mass is possible: (warm) Dark Matter

• Signal?

- too weak to be detected: suppressed by ~109 GeV
- what if it decays?

- affects matter power spectrum?



X-RAY LINE?
• 3.5 keV X-ray line excess 

• Criticism:
K XVIII explanation
No signal from dSph, stacked galaxies and groups, M31

• In this study,
We take 7 keV as a benchmark point (and a possible signal) 
for light axino study.
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Figure 7. 3�4 keV band of the stacked MOS (left panel) and stacked PN (right panel) spectra of the Perseus Cluster. The figures show
the energy band, where a new spectral feature at 3.57 keV is detected. The Gaussian lines with peak values of the flux normalizations of
K xviii and Ar xvii estimated using AtomDB were included in the models. The red lines in the top panels show the model and the excess
emission in both spectra. The blue lines show the total model after a Gaussian line is added, indicating that the unidentified spectral line
can be modeled with a Gaussian.
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Figure 8. 3�4 keV band of the core-excised stacked MOS spec-
trum of the Perseus Cluster. The figures show the energy band,
where a new spectral feature at 3.57 keV is detected. The Gaussian
lines with peak values of the flux normalizations of K xviii and Ar
xvii estimated using AtomDB were included in the models. The
red lines in the top panels show the model and the excess emission
in both spectra. The blue lines show the total model after a Gaus-
sian line is added, indicating that the unidentified spectral line can
be modeled with a Gaussian.

whether the Perseus signal is not an artifact of our
blueshifting procedure. For this we fit the original, red-
shifted MOS spectrum with a line-free apec model. We
obtained a best-fit �2 of 463 for 385 dof. Adding a Gaus-
sian line at 3.57 keV (rest energy) improved the fit by
��2 of 16 for an additional dof. The best-fit flux was
5.3 ± 1.2 (2.0) ⇥ 10�5 photons cm�2 s�1, which is in
agreement with the flux obtained from the blue-shifted
spectrum. We conclude that our detection is indepen-
dent of shifting the spectrum.
Not ready to abandon the sterile neutrino explanation

based on the line flux incorrectly scaling with cluster
mass that we see for Perseus, we tried to investigate
possible astrophysical reasons behind the excess of the

line flux in Perseus. First, we investigated the depen-
dence of the energy and flux of this unidentified line on
the AtomDB predicted fluxes of nearby lines, i.e., the K
xviii line at 3.51 keV and the Ar xvii DR line at 3.62
keV. Allowing the energy of the Gaussian component to
vary produced a best fit for an energy of 3.56 +0.01

�0.02 (
+0.02
�0.03)

keV, with a flux of 6.0+1.8
�1.4 (+2.4

�1.7) ⇥ 10�5 photons cm�2

s�1 (�2 of 598.1 for 572 dof). The best-fit energy is
consistent with the energy measured from the MOS ob-
servations of the full sample. However, the fluxes of the
nearby K xviii line at 3.51 keV and the Ar xvii DR line
at 3.62 keV were at their allowed upper limits predicted
from AtomDB. Relaxing the upper limits has shifted the
line energy higher, to 3.59 +0.01

�0.03 (
+0.02
�0.04) keV with a flux of

5.5+1.7
�0.8 (+3.7

�1.5) ⇥ 10�5 photons cm�2 s�1 giving a slightly
better fit (�2 of 594.5 for 572 dof). We note that the line
energy of this extra line gets close to the Ar xvii DR line
at 3.62 keV. So we removed the extra Gaussian line and
re-fit the Perseus spectrum removing the upper limits on
the Ar xvii DR line. We obtained only a slightly worse
fit than the previous case, with a �2 of 598.8 (574 dof).
The measured flux of the Ar xvii DR line at 3.62 keV
in this case was 4.8+0.7

�0.8 (+1.3
�1.4) ⇥ 10�5 photons cm�2 s�1,

which is a factor of 30 above the predicted maximum
flux of the Ar xvii DR line based on the measured flux
of the Ar xvii line at ⇠3.12 keV and AtomDB line rates.
The predicted maximum flux of the Ar xvii DR line for
the Perseus spectrum was 1.6 ⇥ 10�6 photons cm�2 s�1

(< 0.01 times the flux of the Ar xvii triplet at ⇠3.12
keV).
This test showed that the line detected in the Perseus

Cluster could also be interpreted as an abnormally bright
Ar xviiDR line. We note, however, that obtaining such a
bright DR line relative to the He-like triplet at 3.12 keV is
problematic. The emissivity of the satellite line peaks at
kT=1.8 keV, and declines sharply at lower temperatures,
in addition to the change in the ionization balance which
reduces the Ar+17 content of the plasma. The emissivity
ratio for the DR/3.12 keV has its maximum value of 0.04

Bulbul, Markevitch, Foster, Smith, Lowenstein, 
Randall(2014)

Boyarsky, Ruchayskiy, Iakubovskyi, Franse (2014)

Morphology study



LYMAN-ALPHA FOREST

QSO @ z=3

absorption intensity/frequency 

↔ HI distribution along the line-of-sight

observer

slide by A. Kamada



LYMAN-ALPHA FOREST
• Improving constraints on “warm dark matter mass”

• Warm Dark Matter

mWDM & 2.0 keV

mWDM & 3.3 keV

mWDM & 4.09 keV

mWDM & 5.3 keV

Viel, Lesgourgues, Haehnelt, Matarrese, Riotto (2005)

Viel, Becker, Bolton, Haehnelt (2013)

Baur, Palanque-Delabrouille, Yche, Magneville, Viel (2016)

Iršič et al. (2017)

Ly-alpha constraints assume the Fermi-Dirac dist. and observed 
DM density

2

a solution to the small scale tensions or leave only a small parameter region if any [31]. One may

wonder if we can alleviate the tight bounds by considering a mixed DM model, where DM consists

of cold and warm components [32–34]. The recent analysis of Ly-↵ forest data, on the other hand,

may disfavor even a mixed DM model as a solution to the small scale crisis [35–37].

A. 3.5 keV signals and Ly-↵ forest constraint

It is often not trivial nor direct to apply the Ly-↵ forest constraints to 3.5 keV line-motivated

7 keV WDM models. Although Ly-↵ forest constraints (even the most stringent one; mWDM >

5.3 keV) apparently seem to allow 7 keV DM, we need to remark that they require very low DM

temperature. In the conventional WDM model, the DM particles are assumed to follow the Fermi-

Dirac distribution with two spin degrees of freedom, where the mass and the temperature are

parameters: mWDM and TWDM. The temperature is fixed to reproduce the observed relic density

of DM for a given mass; the WDM density parameter is given by

⌦WDMh2 =
⇣mWDM

94 eV

⌘✓
TWDM

T⌫

◆3

= 7.5
⇣mWDM

7 keV

⌘✓
106.75

gWDM
⇤

◆
, (1)

where h is the dimensionless Hubble constant and T⌫ is the temperature of the SM neutrino. In

the last equality, we have used TWDM = (10.75/g⇤,WDM)1/3T⌫ (g⇤,WDM is the e↵ective number of

massless degrees of freedom at WDM decoupling), which is derived from the comoving entropy

conservation. This shows that we need either g⇤,WDM ⇠ 7000 although g⇤,WDM = 106.75 (226.75)

even with full SM (minimal supersymmetric standard model, MSSM) degrees of freedom. It implies

that a large entropy dilution factor, � ⇠ 70, is needed after WDM freeze-out.

Then a question is what the lower bound on theWDMmass is if the WDM particles are produced

and decoupled before the electroweak phase transition. The simplest way to infer a lower bound on

the WDM mass in non-conventional WDM model is equating the naive velocities in two models,

which are defined by the temperature divided by the mass: �naive = T0/m where the subscript of

0 means the quantity evaluated at present. In the conventional WDM model, this takes a value

of �naive ' 3.8 ⇥ 10�8 (keV/mWDM)4/3. Noting that the temperature in non-conventional models

can be related with the temperature of the SM neutrino through the conservation of the comoving

entropy density such that T = (10.75/106.75)1/3T⌫ , we obtain �naive ' 1.1 ⇥ 10�8 (7 keV/m). It

ends up with the relation of m = 7keV (mWDM/2.5 keV)4/3. Therefore if one takes only a less

stringent constraint like mWDM & 2.0 keV, the 7 keV DM particle is viable, but if one relies on

                   or           ?gWDM
⇤ ⇠ 7000 � ⇠ 70

need linear matter power spectrum

https://arxiv.org/find/astro-ph/1/au:+Irsic_V/0/1/0/all/0/1
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https://arxiv.org/find/astro-ph/1/au:+Irsic_V/0/1/0/all/0/1
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AXINO IN SUSY

Goldstone axion is supersymmetrized

a �! A =
1p
2
(s+ ia) +

p
2✓ã+ ✓2FA

• SUSY+PQ

motivated by both gauge hierarchy and strong CP

• Properties

massless massive by SUSY breaking mã ⇠ m3/2

But in some models,
Tamvakis, Wyler ; Nieves; Goto, 
Yamaguchi; Chun, Kim, Nilles; 
Chun, Lukas

mã ⇠ O(keV)

couplings: suppressed by PQ scale & 109 GeV

Feebly Interacting Massive Particle
or SuperWIMP



MODEL
• SUSY DFSZ model

2

which implies a large dilution factor, � ⇠ 70, in addition
to the full SM degrees of freedom, gSM = 106.75, even if
the WDM particles are decoupled before the electroweak
phase transition.

The phase space distribution of freeze-in axino varies
depending on its production processes, and thus it is af-
fected by the mass spectrum of MSSM particles involved
in axino production. We obtain the resultant phase space
distribution by integrating the Boltzmann equation, and
find that it is typically colder than the thermal one.1 Sax-
ion (s), which is the scalar partner of axion, also makes
axinos colder since its late-time decay injects a certain
amount of entropy to the thermal bath after the axino de-
coupling. We calculate the resultant linear matter power
spectra, and show that they are concordant with the cur-
rent constraints from the Ly-↵ forest data.

Model – The DFSZ solution to the strong CP problem
invokes a coupling between a PQ symmetry breaking field
(X) and the up- and down-type Higgs doublets (Hu,d).
Its SUSY realization is given by the following superpo-
tential:

WDFSZ =
y0
M⇤

X2HuHd , (2)

where y0 is a dimensionless constant and M⇤ is a cuto↵
scale. The PQ charges of X, Hu, and Hd are respectively
�1, 1, and 1. Once the X field develops its vacuum ex-
pectation value (VEV), i.e., X = (vPQ/

p
2) exp(A/vPQ),

where A = (s+ia)/
p
2+

p
2✓ã+✓2FA is the axion super-

field, the µ-term and interaction of axino are generated
as

WDFSZ = µe2A/vPQHuHd ' µ

✓
1 +

2A

vPQ

◆
HuHd , (3)

where µ = y0v
2
PQ/(2M⇤). The approximate equality is

valid when one considers axino interaction. If M⇤ ⇠
1016 GeV, y0 ⇠ 0.1, and vPQ ⇠ 1010 GeV, one finds
µ ⇠ 500GeV. This is a well-known solution to µ-term
generation by the Kim-Nilles mechanism [8]. From this
renormalizable interaction, freeze-in production of axi-
nos occurs dominantly when the cosmic temperature is
of order the masses of other SUSY particles involved in
the process [25–27]. The contributions from dimension-
five anomaly operators (e.g., axino-gluino-gluon) are sup-
pressed [26].

The bRPV is also generated as [10]

WbRPV =
y0i
M2

⇤
X3LiHu ' µ0

i

✓
1 +

3A

vPQ

◆
LiHu, (4)

where Li (i = 1, 2, 3) is the lepton doublet with PQ

1 Di↵erent ways of 7 keV axino decay were considered in Refs. [23].
Nevertheless, none of them discussed the phase space distribution
of axinos.

FIG. 1. Axino phase space distributions from respective pro-
duction processes. The red, blue, and yellow solid lines show
q2f(q) respectively from Higgsino 2-body decay and s- and
t-channel scatterings, while the purple solid line shows that
from wino 3-body decay. For comparison, the Fermi-Dirac
distribution is shown by the dashed line. Each distribution is
normalized such that

R
dqq2f(q) = 1.

charge 2 and µ0
i = y0iv

3
PQ/(2

p
2M2

⇤ ). If M⇤ ⇠ 1016 GeV,
y0i ⇠ 1, and vPQ ⇠ 1010 GeV, one finds µ0

i ⇠ MeV. This
term generates mixing between active neutrinos and ax-
ino. The mixing angle is given by

|✓| ' µ0vu
mãvPQ

' 10�5

✓
µ0

4MeV

◆✓
7 keV

mã

◆✓
1010 GeV

vPQ

◆
,

(5)
where vu is the VEV of Hu and mã is the axino mass.
One finds that mixing parameter sin2 2✓ ⇠ 10�10 is eas-
ily obtained, so the axino decay can be an origin of
the 3.5 keV X-ray line excess like sterile neutrino decay.
From this mixing, axinos are produced by the Dodelson-
Widrow mechanism [28], but it is only a few % of the
total DM density [29]. Therefore, there must exist more
e�cient production mechanism of axinos: freeze-in pro-

duction via the µ-term interaction.
Freeze-in Production – The production of axino DM is

governed by the Boltzmann equation:

dfã(t, p)

dt
=

@fã(t, p)

@t
� Ṙ(t)

R(t)
p
@fã(t, p)

@p
=

1

Eã
C(t, p) ,

(6)

where fã(t, p) is the phase space distribution of axinos,
R(t) is the scale factor, Eã is the axino energy and C(t, p)
is the collision term. Due to feeble interaction of axinos,
one can safely neglect fã in the collision term. Then by
integrating the both sides from t = ti to t = tf , one finds

fã(tf , p) =

Z tf

ti

dt
1

Eã
C

✓
t,
R(tf )

R(t)
p

◆
. (7)

Once one collects all the relevant contributions to the
collision term, it is easy to obtain the axino phase space

PQ

7

A. DFSZ model with bRPV

In the DFSZ axion model, Higgs doublets are charged under PQ symmetry, so the bare mass

term of HuHd is generated by PQ symmetry breaking. In the minimal SUSY version, such a term

is the SUSY µ-term, and is given by the superpotential,

WDFSZ = �Z

 
XY � v2PQ

2

!
+

y0
M⇤

X2HuHd , (3)

where X, Y and Z are chiral superfield with QPQ{Z,X, Y,Hu, Hd} = {0,�1, 1, 1, 1}, The dimen-

sionless constants are denoted by � and y0. Once the PQ symmetry is broken, i.e., hXi ⇠ hY i ⇠
vPQ/

p
2, the µ-term is generated,

µ ⇠ y0v2PQ
2M⇤

. (4)

If M⇤ ⇠ 1016GeV, y0 ⇠ 0.1 and vPQ ⇠ 1010GeV, one can obtain µ ⇠ 500GeV. This is a solution

to the SUSY µ-term problem via the Kim-Nilles mechanism [80]. In addition, bRPV terms can

also be introduced,

WbRPV =
y0i
M2

⇤
X3LiHu , (5)

where Li is a lepton doublet superfield with QPQ(Li) = 2. From the PQ symmetry breaking, one

finds

µ0
i ⇠

y0iv
3
PQ

2
p
2M2

⇤
. (6)

As for the µ-term generation, if M⇤ ⇠ 1016GeV, y0i ⇠ 1 and vPQ ⇠ 1010GeV, one can obtain a

tiny bRPV interaction with µ0
i ⇠ 10�3GeV.

When the PQ symmetry is broken, PQ fields can be expressed by vacuum values and axion

superfield A,

X =
vPQp
2
eA/v

PQ , Y =
vPQp
2
e�A/v

PQ . (7)
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- generates mu-term

- axino interaction
2µ

vPQ
AHuHd
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H

eH

ã

tR

eH ã

QL

H fW

H

ã

H†

eH

FIG. 1: Feynman diagrams for 2-body decay, s- or t-channel scattering, and 3-body decay.

where + (�) sign is chosen when the particle 1 is a fermion (boson). The kinematic variables are

defined by

m2
23 = (p2 + p3)

2 = (p1 � pã)
2 , (32)

m2
2ã = (p2 + pã)

2 = (p1 � p3)
2 , (33)

m2
3ã = (p3 + pa)

2 = (p1 � p2)
2 = m2

1 +m2
2 +m2

3 +m2
ã �m2

23 �m2
2ã , (34)

p̃1ã =

p
(m1 +mã)2 �m2

23

p
(m1 �mã)2 �m2

23

2
p

m2
23

, (35)

and E±
1 (m

2
23) =

q
m2

1 + p±1 (m
2
23)

2 are functions of m2
23 obtained in the following procedure. First,

for fixed m2
23 we substitute masses and momenta into Eq. (32), and solve the resultant equation

for p1

m2
23 = m2

1 +m2
ã � 2Eã

q
m2

1 + p21 + 2p1pã cos ✓ , (36)

where ✓ is the angle between momentum of axino and particle 1. Then we vary cos ✓ in the solution

p1, and find maximum (minimum) as p+1 (m
2
23)

�
p�1 (m

2
23)

�
.

B. Phase space distribution from respective processes

Now we focus on specific examples of axino freeze-in processes, and show that the di↵erent

processes result in di↵erent axino phase space distributions. In this subsection, following decay or

scattering processes are considered. The corresponding Feynman diagrams are shown in Fig. 1,

and the collision terms are summarized in appendix A 2.

• 2-body decay of Higgsino (left in Fig. 1; red solid in Fig. 2): eH ! Hã. We assume the

massless, SM-like Higgs H.

• 2-body decay of MSSM Higgs (left in Fig. 1): H ! eHã. We consider two cases: µ/mH ⌧ 1

2-body decay 2-to-2 3-body decay

“Freeze-in” production

µ

vPQ
⇠ 10�8

“effectively dimensionless”

Kim, Nilles (1984)

Hall, Jedamzik, March-Russell, West (2009)



UV PRODUCTION?
• ElectroWeak Symmetry Breaking & SM quark loops

×A

G

G

Q

Qc

⇠ g2s
32⇡2

1

Fa

¯̃a�5�
µ⌫ g̃a@µG

a
⌫

+

ga

gb gc

a
gc +

ga

gb gc

a

ga +

ga

gb gc

a

gb
ga

gb gc

a

qi

ga qj

a

ga
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• Above the weak scale (or before EW phase transition),  
UV production is negligible.

KJB, Choi, Im (2011)



R-PARITY VIOLATION

• PQ charge QPQ {X,Hu, Hd, Li} = {�1, 1, 1, 2}

2

which implies a large dilution factor, � ⇠ 70, in addition
to the full SM degrees of freedom, gSM = 106.75, even if
the WDM particles are decoupled before the electroweak
phase transition.

The phase space distribution of freeze-in axino varies
depending on its production processes, and thus it is af-
fected by the mass spectrum of MSSM particles involved
in axino production. We obtain the resultant phase space
distribution by integrating the Boltzmann equation, and
find that it is typically colder than the thermal one.1 Sax-
ion (s), which is the scalar partner of axion, also makes
axinos colder since its late-time decay injects a certain
amount of entropy to the thermal bath after the axino de-
coupling. We calculate the resultant linear matter power
spectra, and show that they are concordant with the cur-
rent constraints from the Ly-↵ forest data.

Model – The DFSZ solution to the strong CP problem
invokes a coupling between a PQ symmetry breaking field
(X) and the up- and down-type Higgs doublets (Hu,d).
Its SUSY realization is given by the following superpo-
tential:

WDFSZ =
y0
M⇤

X2HuHd , (2)

where y0 is a dimensionless constant and M⇤ is a cuto↵
scale. The PQ charges of X, Hu, and Hd are respectively
�1, 1, and 1. Once the X field develops its vacuum ex-
pectation value (VEV), i.e., X = (vPQ/

p
2) exp(A/vPQ),

where A = (s+ia)/
p
2+

p
2✓ã+✓2FA is the axion super-

field, the µ-term and interaction of axino are generated
as

WDFSZ = µe2A/vPQHuHd ' µ

✓
1 +

2A

vPQ

◆
HuHd , (3)

where µ = y0v
2
PQ/(2M⇤). The approximate equality is

valid when one considers axino interaction. If M⇤ ⇠
1016 GeV, y0 ⇠ 0.1, and vPQ ⇠ 1010 GeV, one finds
µ ⇠ 500GeV. This is a well-known solution to µ-term
generation by the Kim-Nilles mechanism [8]. From this
renormalizable interaction, freeze-in production of axi-
nos occurs dominantly when the cosmic temperature is
of order the masses of other SUSY particles involved in
the process [25–27]. The contributions from dimension-
five anomaly operators (e.g., axino-gluino-gluon) are sup-
pressed [26].

The bRPV is also generated as [10]

WbRPV =
y0i
M2

⇤
X3LiHu ' µ0

i

✓
1 +

3A

vPQ

◆
LiHu, (4)

where Li (i = 1, 2, 3) is the lepton doublet with PQ

1 Di↵erent ways of 7 keV axino decay were considered in Refs. [23].
Nevertheless, none of them discussed the phase space distribution
of axinos.

FIG. 1. Axino phase space distributions from respective pro-
duction processes. The red, blue, and yellow solid lines show
q2f(q) respectively from Higgsino 2-body decay and s- and
t-channel scatterings, while the purple solid line shows that
from wino 3-body decay. For comparison, the Fermi-Dirac
distribution is shown by the dashed line. Each distribution is
normalized such that

R
dqq2f(q) = 1.

charge 2 and µ0
i = y0iv

3
PQ/(2

p
2M2

⇤ ). If M⇤ ⇠ 1016 GeV,
y0i ⇠ 1, and vPQ ⇠ 1010 GeV, one finds µ0

i ⇠ MeV. This
term generates mixing between active neutrinos and ax-
ino. The mixing angle is given by

|✓| ' µ0vu
mãvPQ

' 10�5

✓
µ0

4MeV
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7 keV

mã

◆✓
1010 GeV

vPQ

◆
,

(5)
where vu is the VEV of Hu and mã is the axino mass.
One finds that mixing parameter sin2 2✓ ⇠ 10�10 is eas-
ily obtained, so the axino decay can be an origin of
the 3.5 keV X-ray line excess like sterile neutrino decay.
From this mixing, axinos are produced by the Dodelson-
Widrow mechanism [28], but it is only a few % of the
total DM density [29]. Therefore, there must exist more
e�cient production mechanism of axinos: freeze-in pro-

duction via the µ-term interaction.
Freeze-in Production – The production of axino DM is

governed by the Boltzmann equation:

dfã(t, p)

dt
=

@fã(t, p)

@t
� Ṙ(t)

R(t)
p
@fã(t, p)

@p
=

1

Eã
C(t, p) ,

(6)

where fã(t, p) is the phase space distribution of axinos,
R(t) is the scale factor, Eã is the axino energy and C(t, p)
is the collision term. Due to feeble interaction of axinos,
one can safely neglect fã in the collision term. Then by
integrating the both sides from t = ti to t = tf , one finds

fã(tf , p) =

Z tf

ti

dt
1

Eã
C

✓
t,
R(tf )

R(t)
p

◆
. (7)

Once one collects all the relevant contributions to the
collision term, it is easy to obtain the axino phase space

• Bilinear RPV induces axino-neutrino mixing
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to the full SM degrees of freedom, gSM = 106.75, even if
the WDM particles are decoupled before the electroweak
phase transition.

The phase space distribution of freeze-in axino varies
depending on its production processes, and thus it is af-
fected by the mass spectrum of MSSM particles involved
in axino production. We obtain the resultant phase space
distribution by integrating the Boltzmann equation, and
find that it is typically colder than the thermal one.1 Sax-
ion (s), which is the scalar partner of axion, also makes
axinos colder since its late-time decay injects a certain
amount of entropy to the thermal bath after the axino de-
coupling. We calculate the resultant linear matter power
spectra, and show that they are concordant with the cur-
rent constraints from the Ly-↵ forest data.

Model – The DFSZ solution to the strong CP problem
invokes a coupling between a PQ symmetry breaking field
(X) and the up- and down-type Higgs doublets (Hu,d).
Its SUSY realization is given by the following superpo-
tential:

WDFSZ =
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where y0 is a dimensionless constant and M⇤ is a cuto↵
scale. The PQ charges of X, Hu, and Hd are respectively
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valid when one considers axino interaction. If M⇤ ⇠
1016 GeV, y0 ⇠ 0.1, and vPQ ⇠ 1010 GeV, one finds
µ ⇠ 500GeV. This is a well-known solution to µ-term
generation by the Kim-Nilles mechanism [8]. From this
renormalizable interaction, freeze-in production of axi-
nos occurs dominantly when the cosmic temperature is
of order the masses of other SUSY particles involved in
the process [25–27]. The contributions from dimension-
five anomaly operators (e.g., axino-gluino-gluon) are sup-
pressed [26].

The bRPV is also generated as [10]
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1 Di↵erent ways of 7 keV axino decay were considered in Refs. [23].
Nevertheless, none of them discussed the phase space distribution
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FIG. 1. Axino phase space distributions from respective pro-
duction processes. The red, blue, and yellow solid lines show
q2f(q) respectively from Higgsino 2-body decay and s- and
t-channel scatterings, while the purple solid line shows that
from wino 3-body decay. For comparison, the Fermi-Dirac
distribution is shown by the dashed line. Each distribution is
normalized such that
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dqq2f(q) = 1.
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where vu is the VEV of Hu and mã is the axino mass.
One finds that mixing parameter sin2 2✓ ⇠ 10�10 is eas-
ily obtained, so the axino decay can be an origin of
the 3.5 keV X-ray line excess like sterile neutrino decay.
From this mixing, axinos are produced by the Dodelson-
Widrow mechanism [28], but it is only a few % of the
total DM density [29]. Therefore, there must exist more
e�cient production mechanism of axinos: freeze-in pro-

duction via the µ-term interaction.
Freeze-in Production – The production of axino DM is

governed by the Boltzmann equation:

dfã(t, p)

dt
=

@fã(t, p)
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� Ṙ(t)

R(t)
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@fã(t, p)

@p
=

1

Eã
C(t, p) ,

(6)

where fã(t, p) is the phase space distribution of axinos,
R(t) is the scale factor, Eã is the axino energy and C(t, p)
is the collision term. Due to feeble interaction of axinos,
one can safely neglect fã in the collision term. Then by
integrating the both sides from t = ti to t = tf , one finds

fã(tf , p) =

Z tf

ti

dt
1

Eã
C

✓
t,
R(tf )

R(t)
p

◆
. (7)

Once one collects all the relevant contributions to the
collision term, it is easy to obtain the axino phase space

• Axino as a sterile neutrino

- decays into neutrino & photon

- produced via Dodelson-Widrow mechanism

Chun (1999); Choi, Chun, Hwang 
(2001); Chun, Kim (2006)



STERILE NEUTRINO

Figure 5: The full parameter space for sterile neutrino dark matter is shown. Among the most stringent constraints at low
energies and masses are constraints from X-ray observations M31 Horiuchi et al. [159], as well as stacked dwarfs [193]. Also
shown are constraints from the di↵use X-ray background [186], and individual clusters “Coma+Virgo” [197]. At higher masses
and energies, we show the limits from Fermi GBM [195] and INTEGRAL [196]. The signals near 3.5 keV from M31 and stacked
clusters are also shown [28, 29]. The vertical mass constraint only directly applies to the Dodelson-Widrow model being all
of the dark matter, labeled “DW,” which is now excluded as all of the dark matter. The Dodelson-Widrow model could still
produce sterile neutrinos as a fraction of the dark matter. We also show forecast sensitivity of the planned Athena X-ray

Telescope [198].

signature decay in the cosmic X-ray background [186], clusters of galaxies [187], individual dwarf galaxies
[188, 189, 190, 191], the Andromeda galaxy [187, 159] and the Milky Way [192]. Among the best current
constraints is that from an analysis of Chandra X-ray observations of the Andromeda galaxy by Horiuchi
et al. [159]. Constraints from stacked dwarf galaxy observations are comparable in strength [193]. There
are also constraints from Perseus observations from Suzaku which extend to higher energies and masses
[194]. At the highest energies, constraints exist from the Fermi Gamma-Ray Space Telescope Gamma-Ray
Burst Monitor (GBM) [195] and INTEGRAL observations of the Milky Way halo [196]. Several of these
constraints are shown in Fig. 5. For a considerable amount of time since these methods were proposed, no
significant detections of unidentified candidate dark matter lines had been found, with only upper limits to
the decay flux.

In early 2014, Bulbul et al. [28] used stacked cluster observations totaling over 6 Ms in exposure time
and detected an unidentified line near 3.55 keV in energy at high significance, 4 to 5�, using both the PN
and MOS CCDs aboard XMM-Newton. The signal was also detected in Chandra observations of the Perseus
cluster, at 2.2� in that work. As seen in Fig. 6, the signal immediately straddled the robust constraints
from M31 [159], which used Chandra data and were available even at that time. The Bulbul et al. analysis
was quite thorough in studying the possible atomic and instrumental sources of the line, and anticipated
much of the followup work. They showed that potassium lines are far too low in emissivity and relative
abundance to account for the line, and that limits on partner lines of Ar XVII and Cl XVII with stronger

22

Dodelson-Widrow

X-ray line

Abazajian 1705.01837
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BOLTZMANN EQ.
• Boltzmann eq. for phase space distribution

12

III. PHASE SPACE DISTRIBUTION OF AXINO

We study the phase space distribution of freeze-in axinos. As discussed in Sec. II, axino is

produced in various freeze-in processes. Once the SUSY spectrum is fixed, the axino yield and phase

space distribution are sum of contributions from respective production processes. The axino phase

space distribution takes very di↵erent forms for various production processes, and the resultant

matter power spectrum depends on which process is dominant. Therefore, comparing it to the

Ly-↵ forest bounds, we should clarify the relation between production mechanisms and shapes of

the axino phase space distribution.

In Sec. III A, we introduce the Boltzmann equation and the collision term to calculate axino

phase space distributions. Then we discuss the dependence of the phase space distribution on

production mechanisms in Sec. III B, and the phase space distribution of realistic axino models in

Sec. III C.

A. Boltzmann Equation

The axino production of momentum p at time t is described by the Boltzmann equation in the

homogeneous and isotropic Universe;

dfã(t, p)

dt
=

@fã(t, p)

@t
� ȧ(t)

a(t)
p
@fã(t, p)

@p
=

1

Eã
C(t, p) , (20)

where p and Eã =
q
m2

ã + p2 are respectively the absolute value of axino three-momentum and

axino energy. The collision term C(t, p) contains all the interaction for axino production and

annihilation. However, since the axino abundance is small compared to the particles in the thermal

plasma, we can neglect fã in the collision term. With fã ' 0, the collision term is the sum of

contributionfs from respective production processes. A contribution from 1+2+· · · ! ã+3+4+· · ·
is written as

gã
Eã

C1+2+···!ã+3+4+···(t, pã) =
1

2Eã

Z Y

i 6=ã

d3pi
(2⇡)32Ei

(2⇡)4�4(p̂1 + p̂2 + · · ·� p̂ã � p̂3 � p̂4 � · · · )

⇥
X

spin

|M1+2+···!ã+3+4+···|2f1f2 · · · (1⌥ f3)(1⌥ f4) · · · , (21)

where p̂i is four-momentum of particle i, gã = 2, and the spin sum is taken over both initial and

final state particles. Since Eq. (21) is independent of fã, we can simply integrate Eq. (20) to obtain

fã(t, p) : phase space distribution
a(t) : cosmic scale factor
Eã : axino energy C(t, p): collision term 13

the phase space distribution at later time tf :

fã(tf , p) =

Z tf

ti

dt
1

Eã
C

✓
t,
a(tf )

a(t)
p

◆
, (22)

where ti is the reheating time. Note that since the momentum is redshifted, the axino with

momentum p at t = tf must have momentum a(tf )/a(t)p at earlier time t < tf .

Before going to the specific examples, we give useful formulas of C(t, p). They are generic and

applicable to other models with axino being replaced by a freeze-in particle of interest. Once we

calculate the matrix element of a given process, the axino phase space distribution is obtained

by Eq. (22) and the following formulas. Here we neglect the Pauli blocking or Bose enhancement

factors of the particles in the thermal plasma, thus 1± f eq
i ' 1,7 and assume that all the particles

involved in a process except for axino are in thermal equilibrium. Note that the following discussion

holds even when the particles in the process are massive.

1. 2-body decay

For 2-body decay, 1 ! ã+ 2, the collision term is put into

gã
Eã

C1!ã+2(t, pã) = ± T

16⇡pãEã

X

spin

|M1!ã+2|2 ln
 
1± e�(E�

2

+Eã)/T

1± e�(E+

2

+Eã)/T

!
, (23)

where T is the temperature of the thermal plasma, and + (�) sign is chosen when the particle 1 is

a fermion (boson). This agrees to Ref. [39]. We define E±
2 =

q
m2

2 + (p±2 )
2 and p±2 by the solutions

of the energy conservation equations

q
m2

1 + (p±2 ± pã)2 = E±
2 + Eã . (24)

7 E↵ects of Pauli blocking and Bose enhancement are so small that the following discussion is not a↵ected (see
appendix A 3).

• Negligible             in the collision termfã(t, p)

collision terms determine distribution



COLLISION TERMS
• 2-body decay

• 2-to-2 scattering

• 3-body decay
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FIG. 1: Feynman diagrams for 2-body decay, s- or t-channel scattering, and 3-body decay.

where + (�) sign is chosen when the particle 1 is a fermion (boson). The kinematic variables are

defined by

m2
23 = (p2 + p3)

2 = (p1 � pã)
2 , (32)

m2
2ã = (p2 + pã)

2 = (p1 � p3)
2 , (33)

m2
3ã = (p3 + pa)

2 = (p1 � p2)
2 = m2

1 +m2
2 +m2

3 +m2
ã �m2

23 �m2
2ã , (34)

p̃1ã =

p
(m1 +mã)2 �m2

23

p
(m1 �mã)2 �m2

23

2
p

m2
23

, (35)

and E±
1 (m

2
23) =

q
m2

1 + p±1 (m
2
23)

2 are functions of m2
23 obtained in the following procedure. First,

for fixed m2
23 we substitute masses and momenta into Eq. (32), and solve the resultant equation

for p1

m2
23 = m2

1 +m2
ã � 2Eã

q
m2

1 + p21 + 2p1pã cos ✓ , (36)

where ✓ is the angle between momentum of axino and particle 1. Then we vary cos ✓ in the solution

p1, and find maximum (minimum) as p+1 (m
2
23)

�
p�1 (m

2
23)

�
.

B. Phase space distribution from respective processes

Now we focus on specific examples of axino freeze-in processes, and show that the di↵erent

processes result in di↵erent axino phase space distributions. In this subsection, following decay or

scattering processes are considered. The corresponding Feynman diagrams are shown in Fig. 1,

and the collision terms are summarized in appendix A 2.

• 2-body decay of Higgsino (left in Fig. 1; red solid in Fig. 2): eH ! Hã. We assume the

massless, SM-like Higgs H.

• 2-body decay of MSSM Higgs (left in Fig. 1): H ! eHã. We consider two cases: µ/mH ⌧ 1

or Higgsino decay

pã ⇠ mH/2 vs. T ⇠ mH

15

H

eH

ã
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FIG. 1: Feynman diagrams for 2-body decay, s- or t-channel scattering, and 3-body decay.
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B. Phase space distribution from respective processes

Now we focus on specific examples of axino freeze-in processes, and show that the di↵erent

processes result in di↵erent axino phase space distributions. In this subsection, following decay or

scattering processes are considered. The corresponding Feynman diagrams are shown in Fig. 1,

and the collision terms are summarized in appendix A 2.

• 2-body decay of Higgsino (left in Fig. 1; red solid in Fig. 2): eH ! Hã. We assume the

massless, SM-like Higgs H.

• 2-body decay of MSSM Higgs (left in Fig. 1): H ! eHã. We consider two cases: µ/mH ⌧ 1

+ s-channel different dists. for s- and t-channel
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(m1 �mã)2 �m2

23

2
p

m2
23

, (35)

and E±
1 (m

2
23) =

q
m2

1 + p±1 (m
2
23)

2 are functions of m2
23 obtained in the following procedure. First,

for fixed m2
23 we substitute masses and momenta into Eq. (32), and solve the resultant equation

for p1

m2
23 = m2

1 +m2
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B. Phase space distribution from respective processes

Now we focus on specific examples of axino freeze-in processes, and show that the di↵erent

processes result in di↵erent axino phase space distributions. In this subsection, following decay or

scattering processes are considered. The corresponding Feynman diagrams are shown in Fig. 1,

and the collision terms are summarized in appendix A 2.

• 2-body decay of Higgsino (left in Fig. 1; red solid in Fig. 2): eH ! Hã. We assume the

massless, SM-like Higgs H.

• 2-body decay of MSSM Higgs (left in Fig. 1): H ! eHã. We consider two cases: µ/mH ⌧ 1

pã ⇠ mfW /3 vs. T ⇠ mfW

comparable to scattering cross section  
e.g. fW +H ! H + ã

pã ⇠
p
s vs. T ⇠

p
s
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SQUARED TRANSFER FUNC.
• Ly-alpha bounds: assuming FD dist. and observed DM density

constrain warm DM mass

• Freeze-in Axino: non-FD dist. 
need linear matter power spectrum to compare it 
with Ly-alpha

• Squared Transfer Function
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FIG. 4: Squared transfer functions from respective production processes (left; solid) and in realistic axino
cases (right; solid). The conventional WDM models with mWDM = 2.0, 3.3, and 4.09 keV are shown for
comparison (dashed).

rameters from “Planck 2015 TT, TE, EE+lowP” in Ref. [91]. The resultant matter power spectra

are double-checked with CAMB [92] by suitably incorporating the covariant multipole perturbation

method [93, 94]. Throughout the analyses, the axino mass is fixed at 7 keV.

Since the Ly-↵ forest bounds are usually put on WDM particles that follow the Fermi-Dirac

distribution, we calculate its resultant matter power spectrum to apply the bounds to axino models.

We follow the perturbation equations with mWDM = 2.0, 3.3, 4.09, and 5.3 keV. Their abundance

is set to that of the observed DM by adjusting its temperature for a given mass.

We follow the methodology suggested in Ref. [48] when constraining freeze-in axino DM by Ly-↵

forest data. Given a WDM matter power spectrum P (k), we define a squared transfer function

T 2(k) by

T 2(k) =
P (k)

PCDM(k)
, (42)

where PCDM(k) is the CDM matter power spectrum. We compare the squared transfer function of

axino T 2
ã (k) to that of the conventional WDM T 2

conv(k). If T 2
ã (k) < T 2

conv(k) is met for any k – the

power spectrum of axino begins to deviate from CDM at smaller k than that of the conventional

WDM – the axino model is regarded as being excluded. This naive determination is, however,

sometimes not applicable, because the slopes of T 2(k) above the cuto↵ scale are di↵erent between

thermal (conventional WDM) and non-thermal (axino) distributions, and T 2
ã (k) < T 2

conv(k) holds

only for some range of k. In such a case, we first determine the half-mode k1/2 by T 2
ã (k1/2) = 1/2.

Then, if T 2
ã (k) < T 2

conv(k) is met for all k < k1/2, we regard the axino model as being excluded.

In Fig. 4, we show the squared transfer function T 2
ã (k) as a function of wave number k [h/Mpc].
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SAXION DECAY
• Coherent oscillation of saxion:

11

This is simply understood since the phase space factor of these two processes are of the same order

and corresponding Feynman diagrams are obtained by crossing symmetry.

C. Dilution from saxion decay

In the SUSY axion model, saxion production and decay must be taken into account since its

late decay produces entropy and thus a↵ects the DM abundance and phase space distribution. In

the SUSY DFSZ model, the saxion abundance from thermal production is of the same order as the

axino thermal production. However, saxions can be produced in the form of coherent oscillation

and the density is given by [86]

Y CO
s ' 1.9⇥ 10�6

✓
GeV

ms

◆✓
min[TR, Ts]

107GeV

◆⇣ s0
1012GeV

⌘2
(17)

where s0 is the initial saxion amplitude when it starts oscillation. Here the temperature, Ts, is

defined by 3H(Ts) = ms. The saxion can dominate the Universe when the temperature becomes

the equality temperature which is given by

T s
e =

4

3
msY

CO
s ' 2.5⇥ 102GeV

✓
min[TR, Ts]

107GeV

◆⇣ s0
1016GeV

⌘2
. (18)

Later, saxion decays at the temperature T s
D and it produces an amount of entropy with dilution

factor [87],

� ' T s
e

T s
D

. (19)

Consequently, the axino abundance is reduced by the dilution factor.6 Moreover, saxion decay does

reheat thermal plasma but does not a↵ect the axino temperature, so axinos become even colder

than that before saxion decay. As we will see in Sec IV, this plays an important role to make axino

DM colder and thus Ly-↵ forest constraint can be avoided.

6 The axino abundance from the Dodelson-Widrow mechanism may not be diluted by saxion domination and subse-
quent decay because in this case axinos are produced at low temperature, T ⇠ 100MeV [83]. Such axinos, on the
other hand, account for a few % of the whole DM abundance as discussed in Sec. II A. Therefore, in the following
discussion, we ignore axinos produced from the Dodelson-Widrow mechanism.

• Saxion dominated universe at
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Consequently, the axino abundance is reduced by the dilution factor.6 Moreover, saxion decay does

reheat thermal plasma but does not a↵ect the axino temperature, so axinos become even colder

than that before saxion decay. As we will see in Sec IV, this plays an important role to make axino

DM colder and thus Ly-↵ forest constraint can be avoided.

6 The axino abundance from the Dodelson-Widrow mechanism may not be diluted by saxion domination and subse-
quent decay because in this case axinos are produced at low temperature, T ⇠ 100MeV [83]. Such axinos, on the
other hand, account for a few % of the whole DM abundance as discussed in Sec. II A. Therefore, in the following
discussion, we ignore axinos produced from the Dodelson-Widrow mechanism.

• Saxion decay

s
b

b
T s
D ' 53 GeV

ms ' 110 GeV
� =

T s
e

T s
D

' 4.7

vPQ = 2.5⇥ 1010 GeV



RELIC ABUNDANCE
• Higgsino NLSP (BM1) case

4

FIG. 4. Squared transfer functions with the entropy produc-
tion from late-time saxion decay. Red crossed points show
T 2(k) for the benchmark points with � = 4.7. Blue solid line
shows T 2(k) for mWDM = 5.3 keV corresponding to the most
stringent lower bound from the Ly-↵ forest data.

of the WDM linear matter power spectrum to the cold
dark matter one, from the phase space distribution of
axinos, with those for the Ly-↵ forest lower bounds of
mWDM = 2.0, 3.3, and 4.09 keV. For comparison, it also
shows the linear matter power spectrum for 7 keV DM
from UV production via non-renormalizable operators
(more specifically, fW + H ! H + ã), where the pro-
duced axinos follow the Boltzmann distribution.4 It is
clearly shown that 7 keV axino DM from UV production
is disfavored by the Ly-↵ forest data if one takes the
constraint, mWDM > 3.3 keV or stronger. On the con-
trary, 7 keV axino DM from freeze-in production in our
benchmark scenario shows more room for linear matter
power spectrum so that it is allowed even by the limit of
mWDM > 3.3 keV. It is, however, still in tension with the
stronger limit mWDM > 4.09 keV.

In this regard, one can conclude that a certain amount
of entropy production is still necessary if the stronger Ly-
↵ forest bounds, mWDM > 4.09 and 5.3 keV, are taken
into account. In Fig. 4, we find that axino production
with � = 4.7 fits the strongest lower bound from the
Ly-↵ forest data, mWDM = 5.3 keV, very well.5 It means
that we need only a mild dilution factor, � > 4.7, to
evade the Ly-↵ forest constraints.

In the SUSY DFSZ model, such a dilution factor is eas-
ily achieved by late-time saxion decay. Saxions are abun-
dantly produced via the coherent oscillation; the yield is

4 In this case, the phase space distribution of axinos is slightly
di↵erent from the Boltzmann one since axinos are not in thermal
equilibrium [30].

5 We can infer the entropy dilution factor by comparing the second
moments of the phase space distribution of 7 keV axino and of
the thermal one with mWDM = 5.3 keV [30, 33].

given by

Y CO
s ' 1.9⇥10�6

✓
GeV

ms

◆✓
min[TR, Ts]

107 GeV

◆⇣ s0
1012 GeV

⌘2

,

(8)
where ms is the saxion mass, TR is the reheat temper-
ature, s0 is the saxion initial amplitude, and Ts is de-
termined by 3H(Ts) = ms (H: Hubble expansion rate).
Such saxions can dominate the universe at the tempera-
ture

T s
e ' 2.5⇥ 102 GeV

✓
min[TR, Ts]

107 GeV

◆⇣ s0
1016 GeV

⌘2

. (9)

If s0 = 1016 GeV, saxion domination occurs at T '
250GeV. For � = 4.7, it is required that saxion decay
occurs at T = T s

D ' 53GeV, since the dilution factor
from saxion decay is determined by the temperature ra-
tio T s

e /T
s
D [34]. The decay temperature T s

D ' 53GeV
is obtained when saxion with ms = 110GeV dominantly
decays into a b-quark pair if vPQ = 2.5 ⇥ 1010 GeV [35].
In this case, the total axino density is dominated by the
freeze-in contribution. Consequently, we find that the to-
tal density of 7 keV axinos also meets the observed DM

mass density, i.e.,

⌦ãh
2 ' 0.1

✓
4.7

�

◆✓
2.5⇥ 1010 GeV

vPQ

◆⇣ mã

7 keV

⌘
. (10)

Conclusions – We have examined 7 keV axino DM in
the R-parity violating SUSY DFSZ model by incorpo-
rating the 3.5 keV X-ray line excess and the Ly-↵ forest
constraints. The model naturally introduces two key in-
gredients: 1) µ-term interaction, which is responsible for
freeze-in production of axinos and 2) bRPV term, which
is responsible for axino-neutrino mixings. While the 3.5
keV line excess is easily explained by 7 keV axino DM
decay via an axino-neutrino mixing, the constraints from
the Ly-↵ forest data impose a colder phase space distri-
bution on axinos. Freeze-in production of axinos via the
µ-term interaction indeed leads to a colder phase space
distribution. Consequently, distribution of axinos meets
the most stringent limit from the Ly-↵ forest data with
a mild entropy production from late-time saxion decay,
which is inherent in the model. We stress that, even
with a mild entropy production, the whole DM density
is explained and dominated by the freeze-in axinos.
The result shown in this letter implies that X-ray ob-

servations determine the mass of axino and its mixing
parameter with active neutrinos, while Ly-↵ forest data
and the observed DM mass density narrow down the sax-
ion mass as well as the PQ breaking scale. From these
aspects, we can constrain and probe the underlying PQ
breaking sector and its communication with the SUSY
breaking sector. We also emphasize that our analysis
can be easily applied to other freeze-in DM models.
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By integrating q2fã(q)

Axinos can be the dominant DM.

• Wino NLSP case (BM2)

hard to get enough entropy due to low TR

For large TR, it becomes similar to Higgsino NLSP.



CONCLUSIONS
• Axino can be DM when its mass is ~keV.

• Under R-parity violation, its decay signal can be observed: 3.5 
keV X-ray excess?

• SUSY DFSZ model accommodates both mu-term for freeze-
in production and bilinear RPV for axino decay.

• While 7 keV DM with FD dist. has tension with Ly-alpha 
mWDM>3.3 keV, freeze-in axino can be consistent with 
mWDM>5.3 keV with mild entropy dilution.

• Saxion (m=110 GeV) decay can make mild dilution.

• Axino can explain the observed DM density.


