Spins of primordial black holes formed in the matter-dominated era

Tomohiro Harada (Rikkyo U)

13/12/2017, COSPA2017 @ YITP

This talk is based on

- Harada, Yoo (Nagoya U), Kohri (KEK), Nakao (OCU) & Jhingan (YGU), 1609.01588
- Harada, Yoo, Kohri, & Nakao, 1707.03595

Primordial black hole (PBH)

- PBH = Black hole formed in the early Universe
 - Probe into the early Universe, high-energy physics, and quantum gravity. May act as γ-ray or X-ray sources, dark matter candidate, and gravitational wave sources. (e.g. Carr et al. (2010), Carr et al. (2016))
 - LIGO BBHs may be made of PBHs. (Sasaki et al. (2016), Bird et al. (2016), Clesse & Garcia-Bellido (2017))
 - The observation of BH spins has attracted great attention. (e.g. McClintock (2011), Abbott et al. (2017))

PBH formation in the matter-dominated (MD) era

- Pioneered by Khlopov & Polnarev (1980). Recently motivated by early MD phase scenarios such as inflaton oscillations, phase transitions, and superheavy metastable particles.
- Primordial perturbations may collapse to PBHs. If pressure is negligible, nonspherical effects play crucial roles.
 - The triaxial collapse of dust leads to a "pancake" singularity. (Lin, Mestel & Shu 1965, Zeldovich 1969)

• The effect of angular momentum may halt gravitational collapse or spin the formed PBHs.

• We here rely on the Newtonian approximation to deal with complicated nonspherical dynamics analytically.

Anisotropic effect

Zeldovich approximation

 Zeldovich approximation (ZA) (1969) Extrapolate the Lagrangian perturbation theory in the linear order in Newtonian gravity to the nonlinear regime.

$$r_i = a(t)q_i + b(t)p_i(q_j),$$

where $b(t) \propto a^2(t)$ denotes a linear growing mode.

We can take the coordinates in which

$$\frac{\partial p_i}{\partial q_j} = \text{diag}(-\alpha, -\beta, -\gamma),$$

where we can assume $\infty > \alpha \ge \beta \ge \gamma > -\infty$.

- We assume that α , β and γ are constant over the smoothing scale.
- We normalise b so that $(b/a)(t_i) = 1$ at horizon entry $t = t_i$.

Application of the hoop conjecture to the pancake collapse

Violent relaxation Virialised

- Hoop conjecture (Thorne 1972): The collapse results in a BH if and only if $C \leq 4\pi GM/c^2$, where C is the circumference of the pancake singularity.
- Then, we obtain a BH criterion:

$$h(\alpha,\beta,\gamma):=\frac{C}{4\pi Gm/c^2}=\frac{2}{\pi}\frac{\alpha-\gamma}{\alpha^2}E\left(\sqrt{1-\left(\frac{\alpha-\beta}{\alpha-\gamma}\right)^2}\right)\lesssim 1,$$

where E(e) is the complete elliptic integral of the second kind.

• If $h \ge 1$? : It does not immediately collapse to a BH.

Spin angular momentum within the region to collapse

• Region V: to collapse in the future

Angular momentum within V with respect to the COM in the Eulerian ٠ coordinates

$$\mathbf{L} = \rho_0 a^4 \left(\int_V \mathbf{x} \times \mathbf{u} d^3 \mathbf{x} + \int_V \mathbf{x} \delta \times \mathbf{u} d^3 \mathbf{x} - \frac{1}{V} \int_V \mathbf{x} \delta d^3 \mathbf{x} \times \int_V \mathbf{u} d^3 \mathbf{x} \right),$$

where $\mathbf{x} := \mathbf{r}/a$, $\mathbf{u} := aD\mathbf{x}/Dt$, $\delta := (\rho - \rho_0)/\rho_0$, and $\psi := \Psi - \Psi_0$.

Linearly growing mode of perturbation

$$\delta_{1} = \sum_{k} \hat{\delta}_{1,k}(t) e^{ik \cdot x}, \ \psi_{1} = \sum_{k} \hat{\psi}_{1,k}(t) e^{ik \cdot x}, \ \mathbf{u}_{1} = \sum_{k} \hat{\mathbf{u}}_{1,k}(t) e^{ik \cdot x},$$

here
$$\hat{\delta}_{1,k} = A_{k} t^{2/3}, \ \hat{\psi}_{1,k} = -\frac{2}{3} \frac{a_{0}^{2}}{k^{2}} A_{k}, \ \hat{\mathbf{u}}_{1,k} = ia_{0} \frac{k}{k^{2}} \frac{2}{3} A_{k} t^{1/3}.$$

wł

1st-order effect

$$\mathbf{L} = \rho_0 a^4 \left(\int_V \mathbf{x} \times \mathbf{u} d^3 \mathbf{x} + \int_V \mathbf{x} \delta \times \mathbf{u} d^3 \mathbf{x} - \frac{1}{V} \int_V \mathbf{x} \delta d^3 \mathbf{x} \times \int_V \mathbf{u} d^3 \mathbf{x} \right)$$

- If ∂V is not a sphere, the 1st term contribution grows as $\propto a \cdot \mathbf{u} \propto t$.
- If we assume V is a triaxial ellipsoid with axes (A₁, A₂, A₃), we find

$$\langle {\rm L}^2_{(1)} \rangle^{1/2} \simeq \frac{2}{5 \sqrt{15}} q \frac{M R^2}{t} \langle \delta^2 \rangle^{1/2}, \label{eq:L21}$$

where $r_0 := (A_1 A_2 A_3)^{1/3}$, $R := a(t)r_0$ and $q := \sqrt{\frac{Q_{ij}Q_{ij}}{3(\frac{1}{5}Mr_0^2)^2}}$ is a nondimensional reduced quadrupole moment of *V*. (Cf. Catelan & Theuns 1996)

Figure: The 1st-order effect can grow if ∂V is not a sphere.

2nd-order effect

$$\mathbf{L} = \rho_0 a^4 \left(\int_V \mathbf{x} \times \mathbf{u} d^3 \mathbf{x} + \int_V \mathbf{x} \delta \times \mathbf{u} d^3 \mathbf{x} - \frac{1}{V} \int_V \mathbf{x} \delta d^3 \mathbf{x} \times \int_V \mathbf{u} d^3 \mathbf{x} \right)$$

Even if ∂V is a sphere, the remaining contribution grows as 1st order × 1st order ∝ a ⋅ δ ⋅ u ∝ t^{5/3}.

$$\langle \mathbf{L}_{(2)}^2 \rangle^{1/2} = \frac{2}{15} I \frac{MR^2}{t} \langle \delta^2 \rangle,$$

where δ hereafter is the density perturbation averaged over *V*. $R := a(t)r_0$. We assume I = O(1). (Cf. Peebles 1969)

Figure: The 2nd-order effect can grow due to the mode coupling.

Spins of PBHs

The application of the Kerr bound to the PBH formation

- Time evolution of V and angular momentum
 - Horizon entry $(t = t_H)$: $ar_0 = cH^{-1}$, $\delta_H := \delta(t_H)$, $\sigma_H := \langle \delta_H^2 \rangle^{1/2}$
 - Maximum expansion $(t = t_m)$: $\delta(t_m) = 1$, typically $t_m = t_H \sigma_H^{-3/2}$
 - $a_* := L/(GM^2/c)$ at $t = t_m$

$$\langle a_{*(1)}^2 \rangle^{1/2} = \frac{2}{5} \sqrt{\frac{3}{5}} q \sigma_H^{-1/2}, \langle a_{*(2)}^2 \rangle^{1/2} = \frac{2}{5} I \sigma_H^{-1/2}, a_* \simeq \max\left(\langle a_{*(1)}^2 \rangle, \langle a_{*(2)}^2 \rangle\right)$$

- For *t* > *t_m*, the evolution of *V* decouples from the cosmological expansion and hence *a*_{*} is kept almost constant.
- Consequences
 - Supercritical angular momentum: typically $\langle a_*^2 \rangle^{1/2} \gtrsim 1$ if $\sigma_H \lesssim 0.1$
 - Most of the PBHs have $a_* \simeq 1$. This contrasts with small spins ($a_* \leq 0.4$) of PBHs formed in the RD era. (Chiba & Yokoyama (2017))
 - Suppression: The Kerr bound implies that *a*_{*} is typically too large for direct collapse to a BH.

Spin distribution

Spin distribution of PBHs formed in the MD era

Figure: The distribution function normalised by the peak value. We assume a Gaussian distribution for the density perturbation. Each curve is labelled with the value of σ_{H} .

• The region with smaller δ_H has larger a_* . This implies that there appears a threshold δ_{th} below which the angular momentum halts the collapse to a black hole due to the Kerr bound.

T. Harada (Rikkyo U)

Spins of PBHs in the MD era

Numerical calculation of PBH production rate

• Triple integral for β_0 ($\theta(x)$ is a step function.)

$$\beta_0 \simeq \int_0^\infty d\alpha \int_{-\infty}^\alpha d\beta \int_{-\infty}^\beta d\gamma \theta [\delta_H(\alpha,\beta,\gamma)-\delta_{\rm th}] \theta [1-h(\alpha,\beta,\gamma)] w(\alpha,\beta,\gamma),$$

where we use $w(\alpha, \beta, \gamma)$ given by Doroshkevich (1970).

Figure: The red lines are due to both angular momentum and anisotropy. The 1st-order effect depends on q. The black solid line is solely due to anisotropy.

We have also derived semianalytic formulae for β₀.

Summary

- PBHs may form not only in the RD era but also in the (early) MD era by primordial cosmological fluctuations.
- In the MD era, the effect of anisotropy gives $\beta_0 \simeq 0.05556\sigma_H^5$, while the effect of angular momentum gives further suppression for the smaller values of σ_H .
- PBHs formed in the MD era mostly have large spins (a_{*} ≃ 1) in contrast to the small spins (a_{*} ≤ 0.4) of PBHs formed in the RD era.

Anisotropic collapse in the ZA

• The triaxial ellipsoid of a Lagrangian ball (assumption)

$$\begin{cases} r_1 = (a - \alpha b)q \\ r_2 = (a - \beta b)q \\ r_3 = (a - \gamma b)q \end{cases}$$

- Evolution of the collapsing region:
 - Horizon entry $(t = t_i)$: $a(t_i)q = cH^{-1}(t_i) = r_g := 2Gm/c^2$.
 - Maximum expansion $(t = t_f)$: $\dot{r_1}(t_f) = 0$ giving $r_f := r_1(t_f) = r_g/(4\alpha)$.
 - Pancake singularity $(t = t_c)$: $r_1(t_c) = 0$ giving $a(t_c)q = 4r_f = r_g/\alpha$.

Application of the Kerr bound to the rotating collapse

Technical assumption

$$|\mathcal{L}_{(1)}| \simeq \frac{2}{5\sqrt{15}}q\frac{MR^2}{t}\delta, \ |\mathcal{L}_{(2)}| \simeq \frac{2}{15}I\frac{MR^2}{t}\langle\delta^2\rangle^{1/2}\delta.$$

The above assumption implies

$$a_{*(1)} = \frac{2}{5} \sqrt{\frac{3}{5}} q \delta_{H}^{-1/2}, \ a_{*(2)} = \frac{2}{5} I \sigma_{H} \delta_{H}^{-3/2}, \ a_{*} = \max(a_{*(1)}, a_{*(2)}).$$

• The Kerr bound $a_* \leq 1$ gives a threshold δ_{th} for δ_H , where

$$\delta_{\rm th} = \max(\delta_{\rm th(1)}, \delta_{\rm th(2)}), \ \delta_{\rm th(1)} := \frac{3 \cdot 2^2}{5^3} q^2, \ \delta_{\rm th(2)} := \left(\frac{2}{5} I \sigma_H\right)^{2/3}.$$

Discussion of PBH production

Semianalytic estimate (black dashed line and blue dashed line)

$$\beta_{0} \simeq \begin{cases} 2 \times 10^{-6} f_{q}(q_{c}) I^{6} \sigma_{H}^{2} \exp \left[-0.15 \frac{I^{4/3}}{\sigma_{H}^{2/3}}\right] & (2nd\text{-order effect}) \\ 3 \times 10^{-14} \frac{q^{18}}{\sigma_{H}^{4}} \exp \left[-0.0046 \frac{q^{4}}{\sigma_{H}^{2}}\right] & (1st\text{-order effect}) \\ 0.05556 \sigma_{H}^{5} & (anisotropic effect) \end{cases},$$

where $f_q(q_c)$: the ratio of regions with $q < q_c = O(\sigma_H^{1/3})$. • σ_H in terms of P_{ζ} :

$$\sigma_H^2 \simeq \left(\frac{2}{5}\right)^2 P_{\zeta}(k_{BH}).$$