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Numerical Relativity

Methods for the 2-Body Problem

0
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Post-Newtonian approx.

BH perturbation 
approach



 

Extreme Mass Ratio Inspiral (EMRI)

µ ⇠ 1� 100M� : “Satellite” BH/NS,

M ⇠ 10
5
-10

7 M� : SMBH.

100-103 events for 2 years mission [Babak et al. 2017]

Probe of BH spacetimes

104-105 cycles for LISA observations



• Expand equations in the mass ratio: 
 
 

• Valid even if                            PN regime. 

• EoM for the “satellite”  

• Formal expressions of  GSF is known up to  
[Pound, 2012].

Gravitational Self-Force (GSF)
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Why the Second Order?

• If  neglect the second-order self-force          , 
          error in acceleration is                    . 

• Error in position is                        . 

• After inspiral time               , 
error in position becomes               . 

• The second-order perturbation        gives 
detectable effects on GW phase!
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• We expand equations in the mass ratio: 

• The field equations to the second-order are 
 
 
where               &                    are  
linear & quadratic in    .

Second-Order Vacuum Equations
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• The field equations to the second-order are
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2 Types of  Divergences Near Horizon

• Physical & spurious divergence in frequency domain 

• Secular changes of  mass        & spin      of  BG BH. 

• Unphysical pure gauge degrees of  freedom 

• Need to identify and  
remove by the boundary conditions. 

✓The singular behavior can be seen  
from the l.h.s. of  Einstein equations

�M �a
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• The origin of  the physical & spurious divergence is 
slowly growing perturbations in time domain: 
 

• The secular growth would be caused by “constant source” 
 

• Since the source is           ,                          at each time. 

• After inspiral time                     , we have                      . 

• Consider                            with the “slow time”             .

Origin of  the Spurious Divergence

@vh(v) = “const.” h(v) / v.
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The Eddington-Finkelstein Coordinates

• The Schwarzschild background metric is 
 
 
in the ingoing Eddington-Finkelstein coordinates,  
where                 . 

✓No singularity appears on the BH horizon. 

✓Ingoing GWs propagate along a null line,  
on which the “time coordinate”    is constant.

ds2 = �fdv2 + 2dvdr + r2d✓2 + r2 sin2 ✓d�2

v = t+ r⇤

v



Near-Horizon Expansion

• Expand the perturbations near the horizon 
 

• Since                                    and             on             , 
           does not appear in the Lorenz gauge. 

•                               does not exist near the horizon. 
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Second-Order Einstein Tensor

• At the second order in   , 
4 components of           NOT containing        are 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Abbott & Deser’s Quantities

• We find 
 
 
 
 
 
where 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Energy & Angular Momentum Fluxes

• Ingoing GW’s     &    across the horizon are 
 
 
 

•     &    are “stationary” for the first-order GWs, 
which calculated from a geodesic motion.
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Physical Secular Growth

•          &          components of 
 
 
determine the secular growth. 

• The secular growth  

➡the secular change of   
the BH’s mass/spin  
                   &                .
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Counter Term of  Secular Growth

• We have found the secular growth        &  
 
 
 
which reproduces the spurious divergence. 

• Therefore, the effective source term, 
 
 
is “regularized.”
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2nd-Order Field Eq. in EF Coordinates

• In this coordinates, we obtain the field eq. as 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Singular Behavior of  Homogeneous Sols.

• First, we obtain singular asymptotic sols. as 
 
 
 
 
 
where each       is a constant. 

• We can remove such singularities  
by an appropriate gauge choice                         .
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Residual Gauge Degrees of  Freedom

• The residual gauge degrees of  freedom 
 
 
which must satisfy 

• We obtain the asymptotic solutions as  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# of  DoF

• # of  d.o.f  regarding the singularities is 2: 

• # of  the residual gauge d.o.f  is 4: 
 
 
 
 
           use 2 of  them to remove the singularities.

c(2)1vr & c(2)1rr.
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Summary

• Need the second-order metric perturbations  
for EMRI observations by LISA. 

• IR & gauge divergences appear near the BH horizon. 

• We have 

• identified the IR divergence even for the Kerr BG. 

• found the appropriate gauge choice for SSS pert. 

• What about gauge d.o.f  for general pert. & Kerr?
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