BH perturbations \＆gauge dof in the near－horizon limit

Kei Yamada（山田 慧生）Kyoto U．
With T．Tanaka

Contents of the Talk

- Introduction
- Secular growth of mass \& spin
- Singular behavior of gauge dog
- Summary

Contents of the Talk

- Introduction
- Secular growth of mass \& spin
- Singular behavior of gauge dog
- Summary

Methods for the 2-Body Problem

Extreme Mass Ratio Inspiral (EMRI)

$\mu \sim 1-100 M_{\odot}:$ "Satellite" BH/NS, $M \sim 10^{5}-10^{7} M_{\odot}:$ SMBH.

$10^{4}-10^{5}$ cycles for LISA observations

Probe of BH spacetimes
$10^{0}-10^{3}$ events for 2 years mission [Babak et al. 2017]

Gravitational Self-Force (GSF)

- Expand equations in the mass ratio:

$$
\begin{gathered}
\varepsilon \equiv \mu / M \ll 1, \\
g_{\mu \nu}=g_{\mu \nu}^{\mathrm{BG}}+\varepsilon h_{\mu \nu}^{(1)}+\varepsilon^{2} h_{\mu \nu}^{(2)}+\cdots .
\end{gathered}
$$

- Valid even if $v / c \sim 1 \Longleftrightarrow \mathrm{PN}$ regime.
- EoM for the "satellite"

$$
\ddot{z}^{\mu}=0+\varepsilon F^{(1) \mu}+\varepsilon^{2} F^{(2) \mu}+\cdots .
$$

- Formal expressions of GSF is known up to $\mathrm{O}\left(\varepsilon^{2}\right)$ [Pound, 2012].

Why the Second Order?

- If neglect the second-order self-force $\mathrm{O}\left(\varepsilon^{2}\right)$, error in acceleration is $\delta \ddot{z}^{\mu} \sim \varepsilon^{2} / M$.
- Error in position is $\delta z^{\mu} \sim \varepsilon^{2} \tau^{2} / M$.
- After inspiral time $\tau \sim M / \varepsilon$, error in position becomes $\delta z^{\mu} \sim M$.
- The second-order perturbation $h^{(2)}$ gives detectable effects on GW phase!

Second-Order Vacuum Equations

- We expand equations in the mass ratio:

$$
g_{\mu \nu}=g_{\mu \nu}^{\mathrm{BG}}+\varepsilon h_{\mu \nu}^{(1)}+\varepsilon^{2} h_{\mu \nu}^{(2)}+\cdots
$$

- The field equations to the second-order are

$$
\delta G_{\nu}^{\mu}\left[\varepsilon h^{(1)}+\varepsilon^{2} h^{(2)}\right]=-\delta^{2} G_{\nu}^{\mu}\left[\varepsilon h^{(1)}, \varepsilon h^{(1)}\right]
$$

where $\delta G_{\nu}^{\mu}[h] \& \delta^{2} G_{\nu}^{\mu}[h, h]$ are linear \& quadratic in h.

2 Types of Divergences Near Horizon

- Physical \& spurious divergence in frequency domain
- Secular changes of mass δM \& spin δa of BG BH.
- Unphysical pure gauge degrees of freedom
- Need to identify and remove by the boundary conditions.
\checkmark The singular behavior can be seen from the l.h.s. of Einstein equations

Contents of the Talk

- Introduction
- Secular growth of mass \& spin
- Singular behavior of gauge dog
- Summary

Origin of the Spurious Divergence

- The origin of the physical \& spurious divergence is slowly growing perturbations in time domain:

$$
\hat{h}(\omega)=\int_{-\infty}^{\infty} h(v) e^{-i \omega v} d v
$$

- The secular growth would be caused by "constant source"

$$
\partial_{v} h(v)=\text { "const." } \quad h(v) \propto v
$$

- Since the source is $\mathrm{O}\left(\varepsilon^{2}\right), h(v)=\mathrm{O}\left(\varepsilon^{2}\right)$ at each time.
- After inspiral time $v=\mathrm{O}(1 / \varepsilon)$, we have $h(v)=\mathrm{O}(\varepsilon)$.
- Consider $h(v) \rightarrow h^{(1)}(\tilde{v})$ with the "slow time" $\tilde{v} \equiv \varepsilon v$.

The Eddington-Finkelstein Coordinates

- The Schwarzschild background metric is

$$
d s^{2}=-f d v^{2}+2 d v d r+r^{2} d \theta^{2}+r^{2} \sin ^{2} \theta d \phi^{2}
$$

in the ingoing Eddington-Finkelstein coordinates, where $v=t+r_{*}$.
\checkmark No singularity appears on the BH horizon.
\checkmark Ingoing GWs propagate along a null line, on which the "time coordinate" v is constant.

Near-Horizon Expansion

- Expand the perturbations near the horizon
$h_{\mu \nu}^{(i) \text { sta }}(\tilde{v}, r, \theta)=h_{0 \mu \nu}^{(i) \text { sta }}(\tilde{v}, \theta)+f h_{1 \mu \nu}^{(i) \text { sta }}(\tilde{v}, \theta)+\mathrm{O}\left(f^{2}\right)$.
- Since $\square \bar{h}_{\mu \nu}=g^{\alpha \beta} \nabla_{\alpha} \nabla_{\beta} \bar{h}_{\mu \nu}$ and $g^{r r}=0$ on $r=2 M$, $d^{2} / d r^{2}$ does not appear in the Lorenz gauge.
- $d^{2} / d r^{2}\left(f^{2}\right)=\mathrm{O}(1)$ does not exist near the horizon.
$\checkmark \mathrm{O}\left(f^{2}\right)$ in $h_{\mu \nu}^{(i) \text { sta }}(\tilde{v}, r, \theta)$ is not necessary.

Second-Order Einstein Tensor

- At the second order in ε, 4 components of $\delta G^{\mu}{ }_{\nu}$ NOT containing $h_{1}^{(2)}$ are

$$
\begin{aligned}
\sin \theta \delta G^{(2) \operatorname{sta} r}= & \frac{\sin \theta}{8 M} \partial_{\tilde{v}}\left(4 h_{0 v v}^{(1) \text { sta }}+h_{0 \theta \theta}^{(1) \text { sta }}+h_{0 \phi \phi}^{(1) \text { sta }}\right) \\
& -\partial_{\theta}\left[\frac{\sin \theta}{8 M^{2}}\left(h_{0 v \theta}^{(2) \text { sta }}+\partial_{\theta} h_{0 v v}^{(2) \text { sta }}-4 M \partial_{\tilde{v}} h_{0 v \theta}^{(1) \text { sta }}\right)\right],
\end{aligned}
$$

$\sin \theta \delta G^{(2) \operatorname{sta}{ }_{\phi}}=\frac{\sin ^{2} \theta}{2} \partial_{\tilde{v}}\left(4 h_{0 v \phi}^{(1) \operatorname{sta}}+h_{0 r \phi}^{(1) \text { sta }}\right)$

$$
+\partial_{\theta}\left[-\frac{\sin ^{3} \theta}{4 M} \partial_{\theta}\left(\frac{1}{\sin \theta} h_{0 v \phi}^{(2) \text { sta }}\right)+\sin ^{2} \theta \partial_{\tilde{v}} h_{0 \theta \phi}^{(1) \text { sta }}\right],
$$

Abbott \& Deser's Quantities

- We find

$$
\begin{aligned}
& \left.\frac{1}{8 \pi} \int \sqrt{-g} \sin \theta \delta G^{(2) \operatorname{sta} r} d \theta d \phi\right|_{r=r_{\mathrm{h}}}=-\left.\partial_{\tilde{v}}\left(M^{\mathrm{AD}}\right)\right|_{r=r_{\mathrm{h}}}, \\
& \left.\frac{1}{8 \pi} \int \sqrt{-g} \sin \theta \delta G^{(2) \operatorname{sta} r}{ }_{\phi} d \theta d \phi\right|_{r=r_{\mathrm{h}}}=-\left.\partial_{\tilde{v}}\left(L^{\mathrm{AD}}\right)\right|_{r=r_{\mathrm{h}}},
\end{aligned}
$$

where

$$
\begin{gathered}
M^{\mathrm{AD}}=\frac{1}{2} \int F^{(v) \alpha \beta} d \Sigma_{\alpha \beta}, \quad L^{\mathrm{AD}}=\frac{1}{2} \int F^{(\phi) \alpha \beta} d \Sigma_{\alpha \beta}, \\
F_{\mu \nu}^{(v / \phi)} \equiv-\frac{1}{8 \pi}\left[\xi^{(v / \phi) \alpha} \bar{h}_{\alpha[\mu ; \nu]}^{(1) \operatorname{sta}}+\xi^{(v / \phi) \alpha} ;\left[\bar{h}_{\nu] \alpha}^{(1) s t a}+\xi_{\mu}^{(v / \phi)} \bar{h}_{\nu] \alpha}^{(1) \text { sta; } ; \alpha}\right] .\right.
\end{gathered}
$$

Energy \& Angular Momentum Fluxes

- Ingoing GW's $\dot{E} \& \dot{L}$ across the horizon are

$$
\begin{aligned}
\dot{E} & \equiv \frac{1}{8 \pi} \int \sqrt{-g}\left(\delta^{2} G_{\alpha}^{r} \xi_{(v)}^{\alpha}\right) d \theta d \phi \\
\dot{L} & \equiv \frac{1}{8 \pi} \int \sqrt{-g}\left(\delta^{2} G_{\alpha}^{r} \xi_{(\phi)}^{\alpha}\right) d \theta d \phi
\end{aligned}
$$

- $\dot{E} \& \dot{L}$ are "stationary" for the first-order GWs, which calculated from a geodesic motion.

Physical Secular Growth

- $\{r v\} \&\{r \phi\}$ components of $\int \sqrt{-g} \delta G_{\nu}^{\mu} d \theta d \phi=\int \sqrt{-g}\left(-\delta^{2} G_{\nu}^{\mu}\right) d \theta d \phi$, determine the secular growth.
- The secular growth
\Rightarrow the secular change of the BH's mass/spin $\delta M=\dot{E} \tilde{v} \& \delta a=\dot{L} \tilde{v}$.

Counter Term of Secular Growth

- We have found the secular growth $\delta M \& \delta a$

$$
h_{\mu \nu}^{(1) \delta M, \delta L}=\frac{\partial g_{\mu \nu}^{\mathrm{BG}}}{\partial M} \delta M+\frac{\partial g_{\mu \nu}^{\mathrm{BG}}}{\partial a} \delta a,
$$

which reproduces the spurious divergence.

- Therefore, the effective source term,

$$
S_{\mu \nu}^{\mathrm{eff}}=-\delta^{2} G_{\mu \nu}\left[\varepsilon h^{(1)}, \varepsilon h^{(1)}\right]-\delta G_{\mu \nu}\left[\varepsilon h^{(1) \delta M, \delta L}\right]
$$

is "regularized."

Contents of the Talk

- Introduction
- Secular growth of mass \& spin
- Singular behavior of gauge dog
- Summary

2nd-Order Field Eq. in EF Coordinates

- In this coordinates, we obtain the field eq. as

$$
\begin{aligned}
\delta G_{v v}^{\mathrm{EFC}(2)}= & \frac{1}{4 M} \partial_{\tilde{v}}\left(2 h_{v v}^{\mathrm{EFC}(1)}+h_{\theta \theta}^{\mathrm{EFC}(1)}\right)-f\left[\partial_{\tilde{v}}\left\{\frac{3}{2 M} h_{v v}^{\mathrm{EFC}(1)}+\frac{1}{M} h_{v r}^{\mathrm{EFC}(1)}+\left(2 \partial_{r_{*}}+\frac{5}{4 M}\right) h_{r r}^{\mathrm{EFC}(1)}\right\}\right. \\
& \left.+\frac{1}{2}\left(\partial_{r_{*}}^{2}+\frac{5}{4 M} \partial_{r_{*}}+\frac{1}{4 M^{2}}\right) h_{r r}^{\mathrm{EFC}(2)}+\frac{1}{2 M} \partial_{r_{*}} h_{v r}^{\mathrm{EFC}(2)}+\frac{1}{4 M^{2}} h_{v v}^{\mathrm{EFC}(2)}+\mathrm{O}(f)\right]+S_{v v}^{\mathrm{EFC}}, \\
\delta G_{v r}^{\mathrm{EFC}(2)}= & \partial_{\tilde{v}}\left[\frac{1}{M} h_{v r}^{\mathrm{EFC}(1)}+\frac{3}{2}\left(\partial_{r_{*}}+\frac{1}{2 M}\right) h_{r r}^{\mathrm{EFC}(1)}-\frac{1}{2 M} h_{\theta \theta}^{\mathrm{EFC}(1)}\right] \\
& +\frac{1}{2}\left(\partial_{r_{*}}^{2}+\frac{5}{4 M} \partial_{r_{*}}+\frac{1}{4 M^{2}}\right) h_{r r}^{\mathrm{EFC}(2)}+\frac{1}{2 M} \partial_{r_{*}} h_{v r}^{\mathrm{EFC}(2)}+\frac{1}{4 M^{2}} h_{v v}^{\mathrm{EFC}(2)}+S_{v r}^{\mathrm{EFC}}+\mathrm{O}(f), \\
\delta G_{r r}^{\mathrm{EFC}(2)}= & -\frac{1}{f} \partial_{r_{*}}\left[\partial_{\tilde{v}} h_{r r}^{\mathrm{EFC}(1)}+\frac{1}{2}\left(\frac{1}{M}+\partial_{r_{*}}\right) h_{r r}^{\mathrm{EFC}(2)}+\mathrm{O}(f)\right]+S_{r r}^{\mathrm{EFC}}, \\
\delta G_{I}^{\mathrm{EFC}(2) I}= & \frac{4 M^{2}}{f} \partial_{r_{*}}\left(2 \partial_{\tilde{v}} h_{v r}^{\mathrm{EFC}(1)}+\partial_{r_{*}} h_{v r}^{\mathrm{EFC}(2)}+\mathrm{O}(f)\right)+S_{I}^{\mathrm{EFC} I},
\end{aligned}
$$

Singular Behavior of Homogeneous Sols.

- First, we obtain singular asymptotic sols. as

$$
\begin{aligned}
& \quad h_{v r}^{\mathrm{EFC}(2)}=-\frac{c_{1 r r}^{(2)}}{2 f}+c_{1 v r}^{(2)} r_{*}+c_{1 r r}^{(2)}+c_{2 v r}^{(2)}+\mathrm{O}(f), \\
& \\
& h_{r r}^{\mathrm{EFC}(2)}=\frac{c_{1 r r}^{(2)}}{f^{2}}-\frac{2 c_{1 r r}^{(2)}}{f}+c_{1 r r}^{(2)}+c_{2 r r}^{(2)}+\mathrm{O}(f), \\
& \text { where each } c_{.2}^{(2)} \text { is a constant. }
\end{aligned}
$$

- We can remove such singularities by an appropriate gauge choice $c_{1 r r}^{(2)}=c_{1 v r}^{(2)}=0$.

Residual Gauge Degrees of Freedom

- The residual gauge degrees of freedom

$$
\xi^{\mu}=\left(\xi^{v}\left(\varepsilon ; \tilde{v}, r_{*}\right), \xi^{r}\left(\varepsilon ; \tilde{v}, r_{*}\right), 0,0\right),
$$

which must satisfy

$$
\square \xi^{\mu}=0 .
$$

- We obtain the asymptotic solutions as

$$
\begin{aligned}
& \frac{\xi^{v}}{2 M}=\frac{c_{1}^{v}}{f}-2 c_{1}^{v}+\frac{\int c_{2}^{v} \delta M d v}{M^{2}}+c_{1}^{r} f+\mathrm{O}\left(f^{2}\right), \\
& \frac{\xi^{r}}{2 M}=c_{1}^{r}+2 \frac{2 c_{2}^{v} \delta M d v}{\int \delta M d v} \frac{\delta M}{M}+c_{2}^{v} \frac{\delta M}{M} f r_{*}+f\left(c_{2}^{r}+2 \frac{\int c_{2}^{v} \delta M d v}{\int \delta M d v} \frac{\delta M}{M}\right)+\mathrm{O}\left(f^{2}\right) .
\end{aligned}
$$

\# of DoF

- \# of d.o.f regarding the singularities is 2 :

$$
c_{1 v r}^{(2)} \& c_{1 r r}^{(2)} .
$$

- \# of the residual gauge d.o.f is 4:

$$
\begin{aligned}
& \frac{\xi^{v}}{2 M}=\frac{c_{1}^{v}}{f}-2 c_{1}^{v}+\frac{\int c_{2}^{v} \delta M d v}{M^{2}}+c_{1}^{r} f+\mathrm{O}\left(f^{2}\right), \\
& \frac{\xi^{r}}{2 M}=c_{1}^{r}+2 \frac{\int c_{2}^{v} \delta M d v}{\int \delta M d v} \frac{\delta M}{M}+c_{2}^{v} \frac{\delta M}{M} f r_{*}+f\left(c_{2}^{r}+2 \frac{\int \frac{\int}{v} \delta M d v d v}{\int \delta M d v} \frac{\delta M}{M}\right)+\mathrm{O}\left(f^{2}\right) .
\end{aligned}
$$

use 2 of them to remove the singularities.

Contents of the Talk

- Introduction
- Secular growth of mass \& spin
- Singular behavior of gauge dog
- Summary

Summary

- Need the second-order metric perturbations for EMRI observations by LISA.
- IR \& gauge divergences appear near the BH horizon.
- We have
- identified the IR divergence even for the Kerr BG.
- found the appropriate gauge choice for SSS pert.
- What about gauge d.o.f for general pert. \& Kerr?

THANK YOU FOR YOUR ATTENTION

