Minimal Majoronic model for dark matter and dark radiation and its signal at the colliders

We-Fu Chang

National Tsing Hua University (PLB730,347, PRD90,065034, JCAP1607,027, and 1711.05722 with J. Wu, J. Ng, and T. Modak)

CosPA2017, YITP, Kyoto Univ., Dec.12, 2017

New Physics and Lepton number -1

- BSM New phys. are called for: (1) $m_{\nu} \neq 0$ and (2) $\Omega_{DM} h^2 \sim 0.12$
- (Too) Many models for Majorana ν. The key is the effective Weinberg operator (LH)² which breaks U(1)_L.
- DM: something BSM electrically charge neutral and stable/long-lived.
- Neutrinos decouple at $T \sim 1$ MeV. The present relativistic energy density of the universe

$$\rho_{rad} = g_{\gamma} \frac{\pi^2}{30} T_{\gamma}^4 + g_{\nu} \frac{\pi^2}{30} \frac{7}{8} T_{\nu}^4 = \left[1 + \frac{7}{8} \left(\frac{4}{11} \right)^{4/3} N_{\text{eff}} \right] \rho_{\gamma}$$

• Taking into account the incomplete decoupling, $N_{eff}^{SM} = 3.046$ (Mangano et al. 2005). Nonzero $\triangle N_{eff}$ call for new relativistic DOF beyond the SM, coined as dark radiation.

N_{eff} and Lepton number

- Planck 2015, 1502.01589, N_{eff} = 3.15(46) at 95%CL.
 Although the SM seems OK, the statistical significance to rule out DR is still very poor.
- $\triangle N_{eff} = 0.4 1.0$, Riess et el(WFC3 on HST), Astrophys.J. 826 (2016).
- Accidental global U(1)_L ∈ SM and it connects to m_ν. Majorona mass is controlled by the scale of U(1)_L SSB in the type-I/inverse see-saw:

$$y\overline{N}^{c}NS_{L} \rightarrow m_{N} = y\langle S_{L} \rangle$$

- DM is stabilized by the Krauss-Wilczek, $U(1)_L \rightarrow Z_2$.
- Global SSB $U(1)_L$ DM- m_ν model: massless Goldstone is built in. It contributes to radiation energy density.

Model

Particle content:

	L, Z_2	<i>SU</i> (2)	$U(1)_Y$
S(Singlet)	2 _{SSB,+} (2nd Higgs, Majoron)	1	0
Φ(Singlet)	1_{-} (DM candidate)	1	0
Н	0 _{SSB,+}	2	$\frac{1}{2}$
N _{iR}	1_	1	0
Li	1_	2	$-\frac{1}{2}$

Renormalizable Lagrangian: (8 new parameters)

$$\mathcal{L}_{scalar} = (D_{\mu}H)^{\dagger}(D^{\mu}H) + (\partial_{\mu}\Phi)^{\dagger}(\partial^{\mu}\Phi) + (\partial_{\mu}S)^{\dagger}(\partial^{\mu}S) - V(H, S, \Phi)$$
$$V(H, S, \Phi) = -\mu^{2}H^{\dagger}H - \mu_{s}^{2}S^{\dagger}S + m_{\Phi}^{2}\Phi^{\dagger}\Phi + \lambda_{H}(H^{\dagger}H)^{2} + \lambda_{\Phi}(\Phi^{\dagger}\Phi)^{2} + \lambda_{s}(S^{\dagger}S)^{2} + \lambda_{SH}(S^{\dagger}S)(H^{\dagger}H) + \lambda_{\Phi H}(\Phi^{\dagger}\Phi)(H^{\dagger}H) + \lambda_{\Phi S}(S^{\dagger}S)(\Phi^{\dagger}\Phi) + \frac{\kappa}{\sqrt{2}} \left[(\Phi^{\dagger})^{2}S + S^{\dagger}\Phi^{2} \right]$$

and we take κ to be real, $m_{\Phi}^2 > 0$, and define $\bar{\kappa} \equiv \lambda_{\Phi S} v_s + \kappa$.

Model

- After SSB, $\langle S \rangle \neq 0$ and $\langle H \rangle \neq 0$, $\Phi = \frac{1}{\sqrt{2}}(\rho + i\chi)$, $S = \frac{1}{\sqrt{2}}(v_s + s + i\omega)$ and $H = (0, \frac{v+h}{\sqrt{2}})^T$. ω is the massless Goldstone or Singlet Majoron.
- $\langle S \rangle$ is inv. under a $U(1)_L \pi$ -rotation, a Z_2 parity remains:

$$s, \omega, h \longrightarrow s, \omega, h$$

 $\rho, \chi \longrightarrow -\rho, -\chi$

- As in Higgs portal, $h_1 = c_{\theta}h s_{\theta}s \equiv h_{SM}$ with a mass of 125 GeV, and $h_2 = s_{\theta}h + c_{\theta}s$ (just call them H and S).
- Once $\{M_S, \theta, \lambda_{SH}\}$ are given, v_S and λ_S are determined.
- No solution found for $M_N < 0.5 \text{TeV}$, not sensitive otherwise. Take $M_N = 1 \text{TeV}$ as benchmark value.
- leptons interact with the Majoron via

$$\frac{1}{2v_s}(\partial_\mu\omega\,\bar\psi_I\gamma^\mu\psi_I)$$

T_{dec} of Majoron

• Very small($\propto m_{\nu}$) pseudoscalar couplings to u, d, e at 1-loop, no constraints from stellar cooling. However a dim-7 int.

$$\mathcal{L}_{f\omega} = -\frac{\lambda_{HS} m_f}{M_h^2 M_s^2} \bar{f} f \partial^{\mu} \omega \partial_{\mu} \omega$$

can be generated through scalar mixing:

• Order of magnitude estimation gives

$$\Gamma(far{f}\leftrightarrow\omega\omega)\simrac{\lambda_{HS}^2m_f^2}{M_H^4M_S^4} imes T_{
m dec}^7 imes N_c^4$$

Since $H \sim T_{dec}^2/M_{pl}$,

$$\frac{N_c \lambda_{HS}^2 m_{eff}^2 \, T_{\rm dec}^5 M_{Pl}}{M_H^4 M_s^4} \approx 1. \label{eq:mass_eff}$$

• Conservation of Entropy in the co-moving volume give:

$$\triangle N_{eff} = \frac{4}{7} \left(\frac{g_*(T_\nu^+)}{g_*(T_\omega^-)} \right)^{\frac{4}{3}}$$

where g_* is the effective number of relativistic DOF. $\Delta N_{\rm eff} = \{0.39, 0.055, 0.0451, 0.0423\}$ for $T_{dec} = \{m_{\mu}, 1GeV, m_c, m_{\tau}\}$ respectively.

 Due to scalar mixing, H can always decays into a pair of invisible ω's,

$$\Gamma_{\omega\omega} = \frac{1}{32\pi} \frac{\sin^2 \theta M_H^3}{v_S^2}$$

• $\Gamma_{\omega\omega} \leq \Gamma_{H}^{inv} < 0.8$ MeV gives M_{S}^{max} via

$$\frac{M_{S}^{4}}{(M_{H}^{2}-M_{S}^{2})^{2}} \leq \cos^{2}\theta \frac{32\pi m_{eff}^{2} T_{dec}^{5} M_{pl}}{v_{H}^{2} M_{H}^{7}} \Gamma_{H}^{inv}$$

M_S , T_{dec} , and sin θ^2

• LHC-I, $\mu = 1.1 \pm 0.11$ gives indirect bound sin $\theta^2 < 0.13$ at 2 σ . Direct search from OPAL $e^+e^- \rightarrow hZ$.

- From rare B decay, $|\theta| < 0.002$ for $M_S < 2$ GeV.
- With this, the decoupling condition yields

$$\lambda_{SH} \sim rac{M_H^2 M_S^2}{T_{dec}^3 \sqrt{T_{dec} M_{pl}}} \ll 1$$

One more thing to be taken into account

$$(\overline{\nu^{c}},\overline{\nu_{R}})\begin{pmatrix} 0 & y_{D}v_{SM} \\ y_{D}v_{SM} & M_{N}(=y_{s}v_{l}) \end{pmatrix} \begin{pmatrix} \nu \\ \nu_{R}^{c} \end{pmatrix}$$

•
$$\mu_{VS}^{SM}\simeq 10^{10-12}~{
m GeV}$$

A. Djouadi / Physics Reports 457 (2008) 1-216

• For ϕ_A, ϕ_B in $V = \lambda_A \phi_A^4 + \lambda_B \phi_B^4 + \lambda_{AB} \phi_A^2 \phi_B^2 + ..., \lambda_A > 0$, $\lambda_B > 0, \lambda_{AB} > -2\sqrt{\lambda_A \lambda_B}$ at any given energy scale. RGE study is necessary.

Numerical Scan

- Comprehensive scan of the whole parameter space. Randomly scan T_{dec} , M_S , θ , M_{ρ} , $\lambda_{\Phi S} (\in [-4\sqrt{\pi\lambda_S}, 4\pi])$, $\bar{\kappa}$, $\lambda_{\Phi H}$, λ_{Φ} .
- Requirements and experimental constraints in our search:
 - Improve the SM vacuum stability, $\mu_{VS} > \mu_{VS}^{SM}$ $(\mu_{VS1-loop}^{SM} = 2 \times 10^5 {\rm GeV})$
 - No Landau pole below μ_{VS}^{SM}
 - $\Gamma_{inv}^H < 0.8 \text{MeV}.$
 - $T_{dec} \in [m_{\mu}, 2GeV].$
 - $\bullet~\theta$ complies with all experimental bounds.
 - relic density $\langle \sigma v \rangle = 2.5(1) \times 10^{-9} (GeV)^{-2}$.
 - Spin-independent direct DM search bound (LUX)
- The largest $R_{VS} \equiv \log_{10} \mu_{VS} / \mu_{VS}^{SM}$ we got ~ 11 . New scalar DOF help to go up to GUT scale, but not M_{pl} .
- $T_{dec} > 1.3 {
 m GeV}$, $1.5 {
 m TeV} < M_{
 ho} < 4 {
 m TeV}$, $M_S \in [20, 100] {
 m GeV}$, $v_S, -\kappa \in [2-20] {
 m TeV}$

Numerical Scan: 2 examples

Config.	T _{dec}	Ms	θ	$M_{ ho}$	VS	R _{VS}	$Br(\omega\omega)$	Br(bb)
A	1.94	27.3	-0.03	2.2	6.7	2.1	0.87	0.11
В	1.87	67.6	-0.32	1.8	12.1	10.0	0.07	0.78

 T_{dec} and M_S (M_{ρ} and v_S) are in GeV (TeV).

Indirect search at LHC (heavy S)

- A universal $\cos^2 \theta$ suppression to all signal strengthes due to H S mixing. $M_S > 40$ GeV detectable at LHC14 with $3ab^{-1}$.
- the SM Higgs triple coupling $\lambda_{HHH}^{SM} = 3M_H^2/v_H$ and $\lambda_{4H}^{SM} = 6\lambda_H = 3(M_H/v_H)^2$ will be modified in this model. The XS for triple Higgs production is too small.

S: A narrow width resonance

• The relevant modes are s into quarks, leptons, and ω 's.

$$\begin{split} &\Gamma(s \to \omega \omega) = \frac{1}{32\pi} \frac{c_{\theta}^2 M_s^3}{v_s^2}, \\ &\Gamma(s \to f\bar{f}) = \frac{M_s}{8\pi} N_c^f \beta_f^3 \left(\frac{m_f s_{\theta}}{v}\right)^2 \\ &\text{where } \beta_f = (1 - \frac{4m_f^2}{M_c^2})^{1/2}. \end{split}$$

 Dominate decay modes: ω-pair (invisible) or bb̄(M_S > 2m_b).
 Looking for a very narrow resonance. Br(S → ωω) Γ_{S→bb̄}/Γ_{S→ωω} Γ_S(GeV)

Direct search at LHC

- $S \rightarrow 2\omega$ has no significance, only $S \rightarrow b\bar{b}$ can be used.
- GF, VBF, VS have huge QCD background. With 4b-tagged jets +I+MET, tts is possible at HL(3ab⁻¹) LHC14.
- We study the SM background following both ATLAS and CMS collaborations. (details see 1711.05722)
- We also extrapolate to a future 100 TeV hadron collider.

- Future Circular Collider expects to have $10^{12-13} Z$ bosons at $\sqrt{s} = M_Z$ with multi- ab^{-1} luminosity.
- Defining $y_f = \frac{M_{f\bar{f}}^2}{M_{Z}^2}$ we obtain

$$\frac{dBr(Z \to Sf\bar{f})}{dy} = \frac{g^2 \sin^2 \theta}{192\pi^2 \cos^2 \theta_W} \sqrt{y_f^2 - 2y_f (1 + r_Z^2) + (1 - r_Z^2)^2} \\ \times \frac{\left[y_f^2 + 2y_f (5 - r_Z^2) + (1 - r_Z^2)^2\right]}{(1 - y_f)^2} \times Br(Z \to f\bar{f})$$

where $r_Z = \frac{M_S}{M_Z}$ and $0 \le y_f \le (1 - r_Z)^2$. The kinematic lower bound can be safely taken to be zero even for y_b .

• Note the lower bound for each decay mode.

•
$$Br(Z \rightarrow b\bar{b} \not\in)_{SM} = 5.25 \times 10^{-8}$$

• $Z \rightarrow S\bar{f}f$ signal stands out from the SM background.

Direct search at e^+e^- machines

- At Higgs factory $e^+e^- \rightarrow Z^* \rightarrow ZS$.
- The dominant SM BG is the intrinsic t-channel $e^+e^- o ZZ^*$

- Minimal Majoron model with SM singlet scalars carrying lepton numbers takes care of DR+DM+ m_{ν} +V.S.
- $riangle N_{eff} \sim$ 0.05, or $T_{dec} > m_c$ is preferred.
- Scalar DM, ρ , of mass 1.5 4 TeV is required by V.S. and an operational type-I see-saw.
- New scalar S with $M_S \in [10, 100]$ GeV, mixing as large as 0.1.
- S mainly decays into $b\bar{b}$ and/or $\omega\omega$ (invisible).
- $pp \rightarrow t\bar{t}S(b\bar{b})$ is feasible at HL LHC.
- Future Z and Higgs factories can reach much smaller mixing region. Sensitive search will be $Z \rightarrow S + f\bar{f}$, followed by S into a pair of Majoron and/or b-quarks.