RH neutrino dark matter in a flavoured *B-L* model

Peter Cox

Kavli IPMU

In collaboration with Chengcheng Han, Tsutomu T. Yanagida

arXiv:1710.01585, arXiv:1705.03858

RH Neutrino Dark Matter

> Simple, well-motivated extension of Standard Model is addition of 3 v_R

- > Very massive ν_R (M $\gtrsim 10^9$ GeV) can explain:
 - Smallness of active neutrino masses via seesaw mechanism
 - Observed baryon asymmetry via thermal leptogenesis
- > However, two v_R are sufficient for both see-saw and leptogenesis

(Frampton, Glashow, Yanagida '02)

> Why include the $3^{rd} \nu_R$ at all? \longrightarrow Dark Matter!

v_R DM and high-scale see-saw

Many studies of RH/sterile neutrino DM ...

Often with ~keV DM, and all 3 v_R below the EW scale (e.g. "vMSM" Asaka, Shaposhnikov '05)

Alternative approach: assume two v_R remain very massive

- Keep full benefit of see-saw, and (non-resonant) leptogenesis
- But, need a production mechanism for lightest v_R Obvious choice: a new gauge symmetry

 $SU(3)_C \times SU(2)_L \times U(1)_Y \times U(1)'$

- v_R^3 produced via thermal freeze-out (i.e. WIMP)
- Majorana mass for v_R^3 generated by spontaneous symmetry breaking (partially) explains hierarchy in v_R masses

Choosing a U(1) symmetry

Interested in vectorial U(1) symmetries that allow:

- Two v_R have large Majorana masses for leptogenesis
- Lightest v_R charged under U(1) and is DM

 \rightarrow Completely fixes lepton charge

$$Q_l = (0, 0, -1)$$

In quark sector, assume

• Suppression of FCNCs (K - K and $D^0 - D^0$ mixing)

Anomaly cancellation (SM+3 ν_R) then restricts to a *single-parameter* class:

$$Q_q = \left(a, a, \frac{1}{3} - 2a\right)$$

Choosing a U(1) symmetry

One parameter family of U(1) symmetries:

$$Q_l = (0, 0, -1)$$
 $Q_q = \left(a, a, \frac{1}{3} - 2a\right)$

> Particularly interesting case is a = 0

- Flavoured B L symmetry
- Anomaly cancellation within each generation (like SM)
- Likely the least constrained choice, since only 3rd gen charged

Flavoured B-L

 \blacktriangleright $U(1)_{(B-L)_3}$: B - L gauge symmetry under which only 3rd generation charged

	q_L^3,b_R,t_R	ℓ_L^3,τ_R,ν_R^3	H	Φ
$Q_{(B-L)_3}$	+1/3	-1	0	+2

> Introduce $\Phi(+2)$ to spontaneously break symmetry

> Also generates Majorana mass for dark matter

$$\chi = (-\varepsilon \nu_R^{3*},\,\nu_R^3)^T$$

$$\mathcal{L} = \frac{i}{2}\bar{\chi}\partial\!\!\!/ \chi + \frac{g}{2}Z'_{\mu}\bar{\chi}\gamma^{5}\gamma^{\mu}\chi - \left(\frac{y}{2}\bar{\chi}\Phi P_{R}\chi + h.c.\right)$$

Yukawa Structure

> However, off-diagonal Yukawa couplings involving 3rd generation are now forbidden

$$Y_d = \left(\begin{array}{cc} \hat{Y}_d^{2 \times 2} & 0\\ 0 & Y_b \end{array}\right)$$

 \rightarrow Require a mechanism to generate these upon $U(1)_{(B-L)_3}$ breaking

Two general possibilities:

- Additional Higgs doublets charged under $U(1)_{(B-L)_3}$
- New vector-like fermions

DM Stability

> Impose \mathbb{Z}_2 symmetry to guarantee DM stability

RH ν DM (-), everything else (+)

Forbids dangerous Yukawa couplings

$$Y_{\nu} = \begin{pmatrix} \hat{Y}_{\nu}^{2 \times 2} & 0\\ -\frac{Y_{L}^{\prime} \phi_{l}}{M_{L}} Y_{L}^{T} & 0 \end{pmatrix}$$

Simultaneously solves potential problem with light RH neutrino raising active neutrino masses, and washing out lepton asymmetry

$$\frac{1}{M_{\nu_R}} \simeq \begin{pmatrix} \frac{1}{\hat{M}_{\nu_R}^{2 \times 2}} & 0\\ 0 & 1\\ 0 & 1\\ \frac{1}{m_{\chi}} \end{pmatrix}$$

DM Annihilation

Four main annihilation channels:

s-wave, dominates when kinematically open

s-wave, p-wave enhanced if $m_{\chi} > m_{Z'}$

p-wave

p-wave

Relic density

Unitarity/perturbativity

DM Direct Detection

- SI DM-nucleon scattering mediated by Z' is velocity suppressed
- Further suppression due to lack of Z' coupling to light quarks

Higgs-\u03c6 mixing leads to spinindependent scattering

$$\mathcal{L} \supset (\phi^{\dagger}\phi)(H^{\dagger}H)$$

At the very least, radiatively generated at two-loop

Limits even for very small mixing angles

DM Direct Detection

- SI DM-nucleon scattering mediated by Z' is velocity suppressed
- Further suppression due to lack of Z' coupling to light quarks

Higgs- ϕ mixing leads to spinindependent scattering

$$\mathcal{L} \supset (\phi^{\dagger}\phi)(H^{\dagger}H)$$

At the very least, radiatively generated at two-loop

Larger mixing angles *strongly* constrained!

 m_{χ} [GeV]

1000

Xe 1T

 10^{4}

1000

100

10

10

100

 $m_{Z'}$ [GeV]

 10^{4}

0=

g=10

DM Indirect Detection

 $\succ \chi \chi \rightarrow \phi Z'$ and $\chi \chi \rightarrow Z'Z'$ annihilation are s-wave

 \rightarrow in principle lead to gamma-ray signals

 $\succ \chi \chi \rightarrow Z'Z'$: p-wave enhanced by $m_{\chi}^4/m_{Z'}^4$

- \rightarrow xsec today suppressed compared to thermal relic xsec $m_{Z'}$ [GeV]
- > Only need to consider $\chi \chi \to \phi Z'$
 - Multibody SM final-state (eg. $\phi Z' \rightarrow bbbb$)
 - Significant Z' BR to ν
- \rightarrow Current Fermi dwarf limits very weak

Collider bounds

$$m_{\phi} = 3m_{\chi}$$

- \succ For heavy scalar, $\chi\chi \rightarrow \phi Z'$ annihilation channel forbidden
- Larger gauge coupling required for correct relic density
 - \rightarrow stronger perturbativity constraints
- \succ Reduced direct detection bound due to increased m_{ϕ}

Summary

- Lightest RH neutrino can provide WIMP dark matter candidate in minimal gauged U(1) extensions
- Consistent with high-scale see-saw and leptogenesis
- Anomaly cancellation restricts possible symmetries:
 An interesting (and least constrained) model is *flavoured B-L* symmetry
- Significant viable parameter space remains to be explored
- Requiring perturbativity up to M_{Pl} gives a strong upper bound on DM mass $(m_{\chi} \lesssim 2 \text{ TeV})$
- Also interesting connection to B-physics anomalies (see talk by Chengcheng Han)

Backup

Yukawa Structure

For general 3x3 Yukawa couplings, introduce:

• $U(1)_{(B-L)_3}$ neutral V-L fermions:

$$Q_{L,R}, U_{L,R}, D_{L,R}, L_{L,R}, E_{L,R}, N_{L,R}$$

• SM singlet scalars (U(1)' breaking):

$$\phi_l(+1), \phi_q(+\frac{1}{3})$$

Higgs- ϕ Mixing ($\theta = 0.1$)

- > Large Higgs- ϕ mixing even more strongly constrained by direct detection
- \blacktriangleright Exception when $m_{\phi} \approx m_h$ due to destructive interference

