Non-Gaussianity and finite length inflation

Shiro Hirai* and Tomoyuki Takami**

Department of Digital Games, Osaka Electro-Communication University
1130-70 Kiyotaki, Shijonawate, Osaka 575-0063, Japan
*Email: hirai@isc.osakac.ac.jp
**Email: takami@isc.osakac.ac.jp

Abstract

In the present paper, certain inflation models are shown to have large non-Gaussianity in special cases. Namely, finite length inflation models with an effective higher derivative interaction, in which slow-roll inflation is adopted as inflation and a scalar-matter-dominated period or power inflation is adopted as pre-inflation, are considered. Using Holman and Tolley’s formula of the nonlinearity parameter $f_{NL}^{\text{flattened}}$, we calculate the value of $f_{NL}^{\text{flattened}}$. A large value of $f_{NL}^{\text{flattened}}$ ($f_{NL}^{\text{flattened}} > 100$) can be obtained for all of the models considered herein when the length of inflation is 60-63 e-folds and f_{NL} has strong dependence on the length of inflation. Interestingly, this length is similar to that for the case in which the suppression of the CMB angular power spectrum of $\ell = 2$ was derived using the inflation models described in our previous papers.

PACS number: 98.80.Cq
1. Introduction

Non-Gaussianity of primordial perturbations is one of the most interesting problems implied by the WMAP data [1, 2]. The observational limits on the nonlinearity parameter from WMAP seven-year data [2] are $-10 < f_{\text{NL}}^{\text{local}} < 74$ (95% CL), $-214 < f_{\text{NL}}^{\text{equil}} < 266$ (95% CL) and $-410 < f_{\text{NL}}^{\text{orthog}} < 6$ (95% CL). However, the standard simple inflation model predicts approximately Gaussian fluctuation, the deviation from Gaussian of which is very small. Several studies have attempted to achieve such large non-Gaussianity. Holman and Tolley [3] showed that if the effective action for the inflaton contains a higher-derivative interaction, which is derived, for example, from k-inflation [4] or DBI inflation [5], and the initial state of inflation is not the Bunch-Davies vacuum, then enhanced non-Gaussianity is derived in the "flattened" triangle configurations, the contribution of which is also discussed in [6]. In their paper, the initial state of the curvature perturbation in inflation was assumed not to be the Bunch-Davies vacuum, i.e., squeezed states, but they did not report a concrete value or the physical mechanism that generates the initial state in inflation, although the value of the coefficient of the initial state in inflation has a very important effect on the non-Gaussianity.

On the other hand, the effect of the initial condition in inflation on the power spectrum of curvature perturbations has been considered [7] and the effect of the length of inflation and pre-inflation physics on the power spectrum and the angular power spectrum of scalar and tensor perturbations has been examined by the present authors. [8-9]. The suppression of the spectrum at $l = 2$ as indicated by Wilkinson Microwave Anisotropy Probe (WMAP) data [1] may be explained to a certain extent by the finite length of inflation for an inflation of 50–60 e-folds [9]. Of course, there are many attempts [10] to derive this suppression. Based on the physical conditions before inflation, we have shown that the initial state of scalar perturbations
inflation is not simply the Bunch-Davies state, but rather a more general state (a squeezed state), where a scalar-matter-dominated period, a radiation-dominated period, or another inflation is considered as pre-inflation, and the general initial states in inflation were calculated analytically. In the present paper, we demonstrate a new property of the proposed inflation model. Using Holman and Talley’s formula for the nonlinearity parameter $f_{NL}^{\text{flattened}}$, we calculate the value of $f_{NL}^{\text{flattened}}$ for the case in which the proposed finite inflation models have effective higher-derivative interactions, where slow-roll inflation is adopted as inflation and a scalar-matter-dominated period or power-law inflation period is adopted as pre-inflation. The obtained results are very interesting.

2. Scalar perturbations

We consider curvature perturbations in inflation and a scalar-matter-dominated epoch. The background spectrum considered is a spatially flat Friedman-Robertson-Walker (FRW) universe described by metric perturbations. The line element for the background and perturbations is generally expressed as [11]

$$ds^2 = a^2(\eta)\left\{(1+2A)d\eta^2 - 2\partial_i B dx^i d\eta - \{(1-2\Psi)\delta_{ij} + 2\partial_i \partial_j E + h_{ij}\}dx^i dx^j\right\}, \quad (2-1)$$

where η is the conformal time, the functions A, B, Ψ, and E represent the scalar perturbations, and h_{ij} represents tensor perturbations. The density perturbation in terms of the intrinsic curvature perturbation of comoving hypersurfaces is given by $\mathcal{R} = -\Psi - (H/\phi)\delta\phi$, where ϕ is the inflaton field, $\delta\phi$ is the fluctuation of the inflaton field, H is the Hubble expansion parameter, and \mathcal{R} is the curvature perturbation. Overdots represent derivatives with respect to time t, and primes represent derivatives with respect to the conformal time η. Introducing the gauge-invariant potential $u = a(\eta)(\delta\phi + (\phi/H)\Psi)$ allows the action for scalar perturbations to
be written as [12]

\[S = \frac{1}{2} \int d^3 x \left\{ \left(\frac{\partial u}{\partial \eta} \right)^2 - c_s^2 (\nabla u)^2 + \frac{Z^*}{Z} u^2 \right\}, \]

where \(c_s \) is the velocity of sound, and in inflation \(Z = a \dot{\phi} / H \), and \(u = -Z \dot{\eta} \). The field \(u(\eta, x) \) is expressed using annihilation and creation operators as follows:

\[u(\eta, x) = \frac{1}{(2\pi)^{3/2}} \int \frac{d^3 k}{k} \{ u_k(\eta) a_k + u_k^*(\eta) a_k^\dagger \} e^{ikx}. \]

The field equation for \(u_k(\eta) \) is derived as

\[\frac{d^2 u_k}{d\eta^2} + \left(c_s^2 k^2 - \frac{1}{Z} \frac{d^2 Z}{d\eta^2} \right) u_k = 0, \]

where \(c_s^2 = 1 \) is assumed in inflation. The solution of \(u_k \) satisfies the normalization condition

\[u_k d u_k^* / d\eta - u_k^* d u_k / d\eta = i. \]

First, slow-roll inflation is considered. The slow-roll parameters are defined as [13, 14]:

\[\varepsilon = 3 \left(\frac{\dot{\phi}^2}{2} + \frac{\phi^2}{2} + V \right)^{-1} = 2M_p^2 \left(\frac{H'(?)}{H(\phi)} \right)^2, \]

\[\delta = 2M_p^2 \frac{H''(\phi)}{H(\phi)}, \]

\[\xi = 4M_p^4 \frac{H'(\phi)H''(\phi)}{(H(\phi))^2}. \]

The quantity \(V(\phi) \) is the inflation potential, and \(M_p \) is the reduced Plank mass. Other slow-roll parameters \((\varepsilon_V, \eta_V, \xi_V) \) can be written in terms of the slow-roll parameters \(\varepsilon, \delta, \) and \(\xi \) for first-order slow roll, i.e., \(\varepsilon = \varepsilon_V, \) \(\delta = \eta_V - \varepsilon_V, \) and \(\xi = \xi_V - 3\varepsilon_V \eta_V + 3\varepsilon_V^2, \) where \(\varepsilon_V = M_p^2 (V'' / V)^2, \) \(\eta_V = M_p^2 (V'' / V), \) and \(\xi_V = M_p^4 (V'' / V^2). \) Using the slow-roll
parameters, \((d^2 Z / d \eta^2)/Z\) is written exactly as

\[
\frac{1}{Z} \frac{d^2 Z}{d \eta^2} = 2a^2H^2 (1 + \varepsilon - \frac{3}{2} \delta + \varepsilon^2 - 2\alpha\delta + \frac{\delta^2}{2} + \frac{\xi}{2}),
\]

and the scale factor is written as \(a(\eta) = -((1 - \varepsilon)\eta H)^{-1}\). Here, the slow-roll parameters are assumed to satisfy \(\varepsilon < 1, \delta < 1,\) and \(\xi < 1\). As only the leading-order terms of \(\varepsilon\) and \(\delta\) are adopted, \(\varepsilon\) and \(\delta\) may be considered to be constant, allowing the scale factor to be written as \(a(\eta) \approx (-\eta)^{1-\varepsilon}\) [14]. Equation (2-4) can be rewritten as

\[
\frac{d^2 u_k}{d \eta^2} + \left(k^2 - \frac{2 + 6\varepsilon - 3\delta}{\eta^2} \right) u_k = 0.
\]

(2-9)

The solution to Eq. (2-9) is written as [13]

\[
f_k^i(\eta) = \frac{\sqrt{\pi}}{2} e^{i(\nu+1/2)\pi/2} (-\eta)^{1/2} H^{(1)}_\nu (-k \eta),
\]

(2-10)

where \(\nu = 3/2 + 2\varepsilon - \delta\), and \(H^{(1)}_\nu\) is the Hankel function of the first kind of order \(\nu\). The mode functions \(u_k(\eta)\) of a general initial state in inflation are written as

\[
u_k(\eta) = c_1 f_k^i(\eta) + c_2 f_k^{i*}(\eta),
\]

(2-11)

where the coefficients \(c_1\) and \(c_2\) obey the relation \(|c_1|^2 - |c_2|^2 = 1\). The important point here is that the coefficients \(c_1\) and \(c_2\) do not change during inflation. In ordinary cases, the field \(u_k(\eta)\) is considered to be in the Bunch-Davies state, i.e., \(c_1 = 1\) and \(c_2 = 0\), because as \(\eta \to -\infty\), the field \(u_k(\eta)\) must approach plane waves \(e^{-i\kappa t} / \sqrt{2k}\). Second, in the case of power-law inflation, where \(a(t) \propto t^q\), a similar method can be used, and the solution is obtained as Eq. (2-10) with \(\nu = 3/2 + 1/(q-1)\). Third, the curvature perturbations in the scalar matter are calculated using a method similar to that used for inflation [12, 15, 7]. The field equation \(u_k\)
can be written in a form similar to Eq. (2-4) with a value of \(c_s^2 = 1 \) and with
\[
Z \propto a_p(\eta)[(H^2 - H')]^{1/2}/H, \quad \text{(where } H = a_p'/a_p \text{)}.
\]
The solution to Eq. (2-4) is then written as
\[
f_k^S(\eta) = (1 - i/k \eta) \exp[-ik \eta] \sqrt{2k}.
\]

3. Calculation of the nonlinearity parameter

Here, an inflation model is considered. Since we consider slow-roll inflation to have a finite length, we assume a pre-inflation period to be a scalar-matter-dominated period in which the scalar field is the inflaton field, or is power-law inflation, i.e., double inflation. A simple cosmological model is assumed, as defined by

Pre-inflation: \(a_p(\eta) = b_1(-\eta - \eta_j)^r \), (3-1)

Slow-roll Inflation: \(a_1(\eta) = b_2(-\eta)^{-1-\varepsilon} \), (3-2)

where
\[
\eta_j = -\left(\frac{r}{1+\varepsilon} + 1\right) \eta_h, \quad b_1 = \left(\frac{1-\varepsilon}{r}\right)^r (-\eta_h)^{-1+\varepsilon-r} b_2.
\]

The scale factor \(a_1(\eta) \) represents slow-roll inflation. Here, de-Sitter inflation (\(\varepsilon = 0 \)) is not considered. Slow-roll inflation is assumed to begin at \(\eta = \eta_1 \). In pre-inflation, for the case of \(r = 2 \), the scale factor \(a_p(\eta) \) indicates that pre-inflation is a scalar-matter-dominated period, and, for the case of \(r = -q/(q-1) \), the pre-inflation is power-law inflation, where the scale factor \(a_p(t) \propto t^q \).

Using above the pre-inflation model, the initial state of inflation given by Eq. (2-11) will be fixed as follows. The coefficients \(c_1 \) and \(c_2 \) are fixed using the matching condition in which the mode function and first \(\eta \)-derivative of the mode function are continuous at the transition time \(\eta = \eta_t \). (\(\eta_t \) is the time at which slow-roll inflation begins.) For simplicity pre-inflation
states are assumed to be the Bunch-Davies vacuum. The coefficients \(c_1 \) and \(c_2 \) can be calculated analytically in the case of the scalar-matter-dominated period:

\[
c_1 = \frac{i}{8\varepsilon^{3/2}} \sqrt{\frac{\pi}{2}} e^{i((-1+\delta-2\varepsilon)\pi/2-2qz/(1+\varepsilon))} [2z(-1+2iz-\varepsilon)H_{5/2+2\varepsilon-\delta}^{(2)}(z) + (4z^2 + (3-2\delta + 3\varepsilon)(1+\varepsilon + 2iz)H_{3/2+2\varepsilon-\delta}^{(2)}(z)],
\]

\[
c_2 = \frac{i}{8\varepsilon^{3/2}} \sqrt{\frac{\pi}{2}} e^{-i((-1+\delta-2\varepsilon)\pi/2+2z/(1+\varepsilon))} [2z(-1+2iz-\varepsilon)H_{5/2+2\varepsilon-\delta}^{(1)}(z) + (4z^2 + (3-2\delta + 3\varepsilon)(1+\varepsilon + 2iz)H_{3/2+2\varepsilon-\delta}^{(1)}(z)],
\]

and in the case of the double inflation model:

\[
c_1 = \frac{\pi}{4\sqrt{q(q-1)(1+\varepsilon)}} \{ e^{i\pi(6+2/(q-1)-2\delta+4\varepsilon)/4} (-q z H_{5/2+1/(q-1)}^{(1)}(zz) H_{3/2+2\varepsilon-\delta}^{(2)}(z) - H_{3/2+1/(q-1)}^{(1)}(zz) (-q z H_{5/2+2\varepsilon-\delta}^{(2)}(z) + (1+q(-2+\delta-4\varepsilon)+\varepsilon) H_{3/2+2\varepsilon-\delta}^{(2)}(z)))],
\]

\[
c_2 = \frac{\pi}{4\sqrt{q(q-1)(1+\varepsilon)}} \{ e^{-i\pi(q(1+\delta-2\varepsilon)2/(q-1))} (-q z H_{5/2+1/(q-1)}^{(1)}(zz) H_{3/2+2\varepsilon-\delta}^{(1)}(z) - H_{3/2+1/(q-1)}^{(1)}(zz) (-q z H_{5/2+2\varepsilon-\delta}^{(1)}(z) + (1+q(-2+\delta-4\varepsilon)+\varepsilon) H_{3/2+2\varepsilon-\delta}^{(1)}(z)))],
\]

where \(z = -k\eta_1 \) and \(zz = q z /((q-1)(1+\varepsilon)) \). The initial states of inflation can be written in terms of the slow-roll parameters, the start time of slow-roll inflation \(\eta_1 \), and the double inflation parameter \(q \). Here, three slow-roll inflation models are adopted: the new inflation model with the potential term given by \(V(\phi) = \lambda^2v^4(1-2(\phi/v)^p) \) (\(p = 3,4 \), \(v \approx M_p \)), the chaotic inflation model with the potential term given by \(V(\phi) = M^4/2(\phi/m)^a \) (\(a = 2,4,6 \), \(m \approx M_p \)), and the hybrid model \(V(\phi) = \alpha((v^2-\sigma^2)/2m^2/2\phi^2 + g^2\phi^2\sigma^2) \)
\[\approx \alpha (v^4 + m^2/2\phi^2) , \text{ } (v \approx 10^{-2}M_p, m \approx 2 \times 10^{-5}M_p) \] [16]. Using the normalization value from the WMAP five-year data, we obtain the values of the spectral index and the slow-roll parameters, such as

New inflation: \(n_s = 0.935, \varepsilon = 1.027 \times 10^{-9} \), \(\delta = -0.03228 \)

Hybrid inflation: \(n_s = 0.9816, \varepsilon = 0.00504, \delta = 0.000878 \)

Chaotic inflation model:

\(\phi^2 \) model: \(n_s = 0.967, \varepsilon = 0.00828, \delta = 0.000022 \)

\(\phi^4 \) model: \(n_s = 0.950, \varepsilon = 0.01655, \delta = 0.008298 \)

\(\phi^6 \) model: \(n_s = 0.9334, \varepsilon = 0.0248, \delta = 0.01657 \).

Now, we calculate the values of the nonlinearity parameter \(f_{NL}^{flattened} \). Holman and Tolley [3] showed that if the effective action for the inflaton contains the higher-derivative interaction [17] \(\xi = \sqrt{-g} \frac{\lambda}{8M^4}((\nabla \phi)^2)^2 \), which is derived, for example, from \(k \)-inflation or DBI inflation, and the initial state of inflaton is not the Bunch-Davies vacuum, then the enhanced non-Gaussianity is derived as follows:

\[f_{NL}^{flattened} \approx \frac{\phi^2}{M^4} \left| c_2 \right| \left(\frac{k}{a(\eta_1)H} \right) = \frac{2\varepsilon M_p^2}{H^2 z^3} \left| c_2 \right| , \quad (3-8) \]

where \(M \) is the cutoff scale, which is the limit of effective theory, and we assume \(M \approx k / a(\eta_1) \) where \(\eta_1 \) is the beginning time of slow-roll inflation, and \(z = -k \eta_1 \). The present treatment considers the effect of the length of inflation, where \(z = 1 \) indicates that inflation starts at the time when the present-day size perturbation \(k = 0.002 \) (1/Mpc) exceeds the Hubble radius in inflation (i.e., inflation of close to 60 \(e \)-folds). Using the values of the above parameters we can

\[n_s = 0.935, \varepsilon = 1.027 \times 10^{-9} \]

\[n_s = 0.9816, \varepsilon = 0.00504, \delta = 0.000878 \]

\[n_s = 0.967, \varepsilon = 0.00828, \delta = 0.000022 \]

\[n_s = 0.950, \varepsilon = 0.01655, \delta = 0.008298 \]

\[n_s = 0.9334, \varepsilon = 0.0248, \delta = 0.01657 \].
calculate the values of $|c_1|$, $|c_2|$, and $f_{NL}^{\text{flattened}}$ in terms of $z (=-k\eta)$. The values of $|c_2|$ change only slightly among the models, but vary with the value of z, as 0.0063 for $z=8$, 0.004 for $z=10$, and 0.001 for $z=20$, and $|c_1|\approx 1$. From all of the models except for the ϕ^4 model, similar values of $f_{NL}^{\text{flattened}}$ are calculated, i.e., $f_{NL}^{\text{flattened}} \approx 120$ at $z=8$, and $f_{NL}^{\text{flattened}} \approx 40$ at $z=10$. Details are shown in Table 1. With respect to the other values of z, larger values of $f_{NL}^{\text{flattened}}$ can be derived at smaller z ($z<8$), and small values of $f_{NL}^{\text{flattened}}$ can be derived at larger z ($z>20$). Based on the above results, the value of $f_{NL}^{\text{flattened}}$ appears to depend strongly on the value of z, which represents the length of inflation, and the difference of the values of $f_{NL}^{\text{flattened}}$ among our three slow-roll inflation models is not large. Since the z-dependence of $f_{NL}^{\text{flattened}}$ is very steep, any value of $f_{NL}^{\text{flattened}}$ can be derived at some point of z. We next consider the case of double inflation, the value of $f_{NL}^{\text{flattened}}$ is 100 at $3<z<4$ in the chaotic inflation, at $4<z<5$ in the case of new inflation, and at $z \approx 3$ in the case of hybrid inflation. With respect to the q-dependence ($a(t) \propto t^q$), the values of $f_{NL}^{\text{flattened}}$ are similar at very large q but change at $q \approx 100$. The details are shown in Tables 2-4.

4. Discussion

We have derived a new property of the proposed finite inflation model. The possibility of large non-Gaussianity is demonstrated. The proposed inflation model is a finite length inflation model with an effective higher derivative interaction, where slow-roll inflation is adopted as inflation and a scalar-matter-dominated period or power inflation is adopted as pre-inflation. Owing to the existence of pre-inflation, the initial state in inflation is not the Bunch-Davies
state, but is instead a more general state. The coefficients c_1 and c_2 can be analytically calculated. Using Holman and Tolley’s formula of the nonlinearity parameter $f_{NL}^{\text{flattened}}$, we calculated the value of $f_{NL}^{\text{flattened}}$. For the case in which the scalar-matter-dominated period is considered to be pre-inflation, large values of $f_{NL}^{\text{flattened}} (f_{NL}^{\text{flattened}} \approx 100)$ are obtained at $8 < z < 10$ in all the models considered herein, and similar results are derived for the case of double inflation at $3 < z < 4$. These ranges can be written as 60-63 e-folds. This length is similar to that obtained when the suppression of CMB angular power spectrum of $\ell = 2$ was derived using the inflation models described in previous papers [7], but such spectral suppression is not inconsistent when considering cosmic variance. On the experimental value of $f_{NL}^{\text{flattened}}$, the orthogonal shape ($f_{NL}^{\text{orthog}}$) is peaked both on equilateral-triangle configurations (f_{NL}^{equil}) and on flattened-triangle configurations ($f_{NL}^{\text{flattened}}$) [18], but we think we need further consideration to drive the constraint of $f_{NL}^{\text{flattened}}$ from the constraints of f_{NL}^{orthog} and f_{NL}^{equil}. Therefore, we do not show it here. We assume such a high-derivative interaction in order to obtain non-linearity and effective interactions for slow-roll interaction. This high-derivative interaction appears to influence the parameters of slow-roll inflation. In order to clarify this problem, we must investigate a concrete inflation model such as k-inflation or DBI inflation. In the future, we would like to apply the proposed method to other inflation models and investigate the dependence of the length of inflation on $f_{NL}^{\text{flattened}}$.

Acknowledgments

The authors would like to thank the staff of Osaka Electro-Communication University for their valuable discussions.
References

[17] Creminelli P. 2003 JCAP 0310,003

Table 1 Values of $f_{NL}^{\text{flattened}}$ for the case of the matter-dominated period as pre-inflation

<table>
<thead>
<tr>
<th>New inflation</th>
<th>Hybrid</th>
<th>Chaotic inflation</th>
</tr>
</thead>
<tbody>
<tr>
<td>p=3</td>
<td>p=4</td>
<td>ϕ^2</td>
</tr>
<tr>
<td>$z = 8$</td>
<td>123.8</td>
<td>123.7</td>
</tr>
<tr>
<td>$z = 10$</td>
<td>40.5</td>
<td>40.4</td>
</tr>
<tr>
<td>$z = 20$</td>
<td>1.26</td>
<td>1.26</td>
</tr>
</tbody>
</table>

Table 2 Values of $f_{NL}^{\text{flattened}}$ in the hybrid inflation for double inflation

12
Table 3 Values of $f_{NL}^{\text{flattened}}$ for the new inflation case of $n = 3$ and for the new inflation case of $n = 4$ for double inflation

$n = 3$

<table>
<thead>
<tr>
<th>z</th>
<th>$q=10^2$</th>
<th>$q=10^3$</th>
<th>$q=10^4$</th>
<th>$q=10^5$</th>
<th>$q=10$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>108.5</td>
<td>109.1</td>
<td>115.3</td>
<td>190.6</td>
<td>1096.5</td>
</tr>
<tr>
<td>4</td>
<td>23.4</td>
<td>23.6</td>
<td>25.3</td>
<td>45.1</td>
<td>266.8</td>
</tr>
<tr>
<td>5</td>
<td>7.24</td>
<td>7.3</td>
<td>7.93</td>
<td>14.8</td>
<td>88.6</td>
</tr>
</tbody>
</table>

$n = 4$

<table>
<thead>
<tr>
<th>z</th>
<th>$q=10^2$</th>
<th>$q=10^3$</th>
<th>$q=10^4$</th>
<th>$q=10^5$</th>
<th>$q=10$</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>254</td>
<td>254.1</td>
<td>256</td>
<td>275.1</td>
<td>478.5</td>
</tr>
<tr>
<td>5</td>
<td>81.8</td>
<td>81.9</td>
<td>82.5</td>
<td>89.1</td>
<td>157.7</td>
</tr>
<tr>
<td>6</td>
<td>32.5</td>
<td>32.6</td>
<td>32.8</td>
<td>35.6</td>
<td>63.6</td>
</tr>
</tbody>
</table>

Table 4 Values of $f_{NL}^{\text{flattened}}$ for the Chaotic inflation case of ϕ^2, ϕ^4, and ϕ^6 for double inflation

ϕ^2 model

<table>
<thead>
<tr>
<th>z</th>
<th>$q=10^2$</th>
<th>$q=10^3$</th>
<th>$q=10^4$</th>
<th>$q=10^5$</th>
<th>$q=10$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>227.6</td>
<td>228.2</td>
<td>234.7</td>
<td>306.9</td>
<td>1196.5</td>
</tr>
<tr>
<td>3.5</td>
<td>100.6</td>
<td>100.9</td>
<td>104.2</td>
<td>140.0</td>
<td>561.2</td>
</tr>
<tr>
<td>4</td>
<td>49.8</td>
<td>50.0</td>
<td>51.8</td>
<td>71.1</td>
<td>291.0</td>
</tr>
</tbody>
</table>

ϕ^4 model

<table>
<thead>
<tr>
<th>z</th>
<th>$q=10^2$</th>
<th>$q=10^3$</th>
<th>$q=10^4$</th>
<th>$q=10^5$</th>
<th>$q=10$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>181.1</td>
<td>181.5</td>
<td>185.6</td>
<td>242.9</td>
<td>1130.3</td>
</tr>
</tbody>
</table>
\[z=3.5 \quad 76.1 \quad 76.4 \quad 78.6 \quad 108.1 \quad 530.0 \\
\]
\[z=4 \quad 36.1 \quad 36.2 \quad 37.5 \quad 53.9 \quad 274.4 \]

\(\phi^6 \) model

<table>
<thead>
<tr>
<th>(z)</th>
<th>(q=10^5)</th>
<th>(q=10^4)</th>
<th>(q=10^3)</th>
<th>(q=10^2)</th>
<th>(q=10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>165.5</td>
<td>165.5</td>
<td>165.4</td>
<td>191.2</td>
<td>1061.5</td>
</tr>
<tr>
<td>3.5</td>
<td>67.1</td>
<td>67.1</td>
<td>67.1</td>
<td>81.4</td>
<td>497.6</td>
</tr>
<tr>
<td>4</td>
<td>30.6</td>
<td>30.6</td>
<td>30.6</td>
<td>39.0</td>
<td>257.6</td>
</tr>
</tbody>
</table>