Dark Matter Direct Detection Who will win the race?

Prof. Rupak Mahapatra

Texas A&M University

COSMO/CosPA, 2010

Dark Matter Direct Detection

Anyone can win the race!

Prof. Rupak Mahapatra

Texas A&M University

COSMO/CosPA, 2010

HOME PAGE TODAY'S PAPER V	DEO MOST	POPULAR	TIMES TOP	ICS						Get Hon	ne Delive	ery Log In Re	gister Now	
The New Hork Times Space					& Cosmos				Search All NYTimes.com			Go DOCTOR ARNASSU DIC 25		
WORLD U.S. N.Y. / REGION	BUSINESS	TECHNOL	OGY SCI	NCE	HEALTH	SPORTS	OPINION	ARTS	STYLE	TRAVEL	JOBS	REAL ESTATE	AUTOS	
di alta di				ENV	RONMENT S	SPACE & CO	SMOS							
At a Mine's Botto	m, Hiı	nts of	Dark I	<u>/</u> at	ter			More A	articles ir	1 Science »				
By DENNIS OVERBYE Published: December 17, 2009 An international team of physicists working in the bottom of an old iron mine in Minnesota said Thursday that they might have registered the first faint hints of a ghostly sea of subatomic particles						SIGN II RECOM	N TO IMEND	Politi	Politics E-Mail Keep up with the latest news from Washington with the daily Politics e-mail newsletter. Sign Up See Sample Privacy Policy					
					an old		ER							
					rticles	SIGN II MAIL	N TO E-							
known as <u>dark matter</u> long thought to permeate the cosmos.														
🖲 Enlarge This Imag	e The pa	The particles showed as two ti pulses of heat deposited over t					NTS	TOYOTATHON						
	pulses					6 SHARE								
	course germa cooled zero. H more t the pu radioa	course of two years in chunks of germanium and silicon that had been cooled to a temperature near absolute zero. But, the scientists said, there was more than a 20 percent chance that the pulses were caused by fluctuations radioactivity of their cavern, so the res					MAGGIE GYLLENHAAI HEART I AYING THEATERS RAILER ground ntalizing.	O [®] AP ON MANY OF YOUR F TOYOTA MODE					TE	
	but no Gordo called likely i	t definitiv n Kane, a the result t is dark r	re. physicist s "inconcl natter det	from usive ectio	the <u>Unive</u> , sadly," ad	MOST I	POPULAR LED BL	OGGED SE	ARCHED					
Fernil	b Dr. Ka	Dr. Kane said results from bigger and thus more sensitive						1. That Tap Water Is Legal but May Be Unhealthy						

Outline

- Dark Matter Direct Detection General Technique
- Cryogenic Dark Matter Search (CDMS)
- G2 (10⁻⁴⁶cm²) 100kg SuperCDMS, G3 1.5ton GEODM
- Other Technologies: Noble liquid, Bubble Ch
- The Technical/Funding Landscape and future

Dark Matter exists ...

What is it made of? Can we detect it?

Coincidence or Clue? A Convergence

Four roads to dark matter:

Gravitational

Direct

Direct Detection

Goals:

- Directly Detect WIMPs as Earth Ploughs through the DM Halo
- Measure Mass and Scattering cross-section

Challenges:

- Very low flux & rate
- Must maintain ultra low background < few events/year

Out there & may interact on earth!

essential for believable Discovery

Different Particles, Different Interactions

Recoil difference provides Discrimination

Experimental Techniques (alphabetic ordering)

- Ge detectors
 - CDMS
 - CoGeNT
 - Edelweiss
- Superheated Bubble Technology
 - COUPP
 - PICASO
- Single Phase Noble liquid Detectors
 - DEAP/CLEAN
 - XMASS
- Two Phase Noble Liquid Detectors
 - XENON/LUX
 - WARP/ArDM

CDMS: The Big Picture

Discrimination & shielding for a zero background experiment with cryogenic Ge detectors with photo lithographically patterned sensors

Shielding

- Passive (Pb, poly, depth)
- Active (muon veto shield)

Energy Measurement •Phonon & Charge Position measurement X-Y-Z •From phonon pulse timing

Ge: 640 gm, 3"dia x1" thick

Operated at ~40 mK for good phonon signal-to-noise

ZIP Detectors

(Z-sensitive lonization and Phonon)

Phonon side: 4 quadrants of
athermal phonon sensors
Energy & Position (Timing)

Charge side: 2 concentric electrodes (Inner & Outer) Energy (& Veto)

Inner electrode

Anatomy of an event

Sensors held in equilibrium between Normal and Super Conducting. Highly sensitive to small energy deposit. Fast signal. SQUID Readout

Excellent Energy, Position Resolution

Excellent Primary (γ **) Background Rejection**

CDMS Apparatus Outside In

Surround detectors with active muon veto

Use passive shielding to reduce γ/Neutrons •Lead and Copper for photon •Polyethylene for low-energy neutron

Neutron background negligible in Soudan, for recent runs

What Does WIMP Search Data Look Like?

Ionization collection incomplete for surface β . Low E-field at surface: e/h can travel to wrong electrode

 \Rightarrow It can appear in low yield signal region (Yield=Ion/Phonon) ²⁶

We see it in Calibration Too!

Compton scattered electrons provide us with calibration sample

β Rejection: Phonon Pulse Timing

Surface events (β) have fast arriving and fast rising pulses

WIMP Candidate: Blind Analysis

All cuts set blind, using calibration data only

- •In good Fiducial Volume
- •In the Nuclear Recoil Band

•Not surface event: phonon timing cut

•Not a Multiple Scatter

2007: 0 Observed events

Expected Background: 0.6 \pm 0.5 surface events and < 0.2 neutrons

No background in Last Few Runs

- Zero observed events in 2005 and 2007 results
- CDMS strives hard to keep almost zero background, independent of the exposure, by tightening and improving the rejection criteria
- Always keep expected background to ~.5 events to maximize discovery potential

Future: Stay Background Free

Takes years for detector technology to mature!

Background Identification

CDMS detectors stacked with no spacing. β multiple scatters.

•Check shared energy! Dramatically reduces combinatorics.

Z1

Z2

Peak in Spectrum! Find radioactive source to be ²¹⁰Pb from Radon Decay

²¹⁰Bi* decay: mostly Internal Conversion Per ²¹⁰Pb decay

Background Identification

Major success with correlating α and β rates, nearest neighbor double scatters

~75% of our contamination is ²¹⁰Pb (Rn daughters) => Already reduced by improved handling. 3X lower background

T2Z5

5

Rejecting Remaining β background

Recent Result!

Surface Event "Leakage"

3 independent sidebands for estimating the passing/failing ratio

All 3 consistent, leakage = 0.6 ± 0.1 (stat.) ± 0.2 (syst.)

Open the Box: Look at blinded region

We unblinded the signal region November 5, 2009

47
Open the Box: Before Timing Cut

We unblinded the signal region November 5, 2009

Open the Box: After Timing Cut

We unblinded the signal region November 5, 2009

49

Comments

The poisson probability to have observed 2 or more surface events with an expection of 0.6 (not accounting for uncertainty) is: 12%

The observation of 2 events is consistent with background estimates made before unblinding.

However, our detectors provide numerous info on each event which can provide detailed likelihood of each event being a signal or background like

Not just a binary answer, actual prob for each event

Data Quality Re-checks

experimental performance was excellent at the time of both observed events

Data Quality Item	Result
muon veto performance	√ good
neutralization	√ good
KS tests	✓ normal
noise levels	✓ typical
pre-pulse baseline rms	✓ typical
background electron-recoil rate	✓ typical
surface event rate	✓ typical
radial position	well-contained
single-scatter identification	√ good
special running conditions	√ no
operator recorded issues	✓ no ⁵

Reconstruction Checks

ionization and phonon energies look good, phonon timing looks good...

Could there be a problem with the start time of the charge pulse?

Effect included in expected leakage

But, we add additional 0.2 events systematic uncertainty post unblinding

Detailed Timing, Charge, Phonon Energy Likelihood

Candidate in T1Z5 77% probability of NR <.9% probability of ER

Candidate in T3Z4 68% probability of NR <.5% probability of ER

Final Comments on the 2 Events

We can not exclude possibility that these 2 events may be part of a signal

At the same time, the significance of 2 events on top of half event expected background is not high.

Need more events to confirm! Look at the Future!

90% C.L. Spin-Independent Limit

Future: More Data, More Detectors

CDMS R/Evolution

SuperCDMS Detector: Bigger is Better

.25 Kg Ge

Cost of production/testing1/3 less per Kg. mass

Background dominated by surface β. Reduce surface/volume
1/3 less per Kg. mass

One SuperTower taking dataTwo more to be installed soon

kg. mass er taking data installed soon

QI

.64 Kg Ge

Dark Matter sensitivity scales as mass. Problems scale as surface⁶area

Detector Revolution: iZIP

surface and bulk events experience different electric fields

D

.

SuperCDMS Soudan with iZIP

- Fabricating 5 towers of 5 iZIPs (640gm each detector) for Soudan
 - All 5 will be installed by end of summer 2011
- Installation of 2 regular ZIP towers (already built) and 1 iZIP tower (total 10kg) end of year
 - Phasing out CDMSII towers (250g)
- Exciting results next year
 - Extremely low β background
 - Probably limited by neutrons in 2 yr
 - Go to SNOLab

SuperCDMS 100 kg: SNOLab

Strong endorsement by Part. Astroph. Sc. Adv. Group (PASAG) 2009

•100kg total mass: bigger iZIP (4"x1.33", 1.5kg)

•Negligible radioactive & cosmogenic background

Sensitivity reach 10^-46

SuperCDMS in SNO Lab

SuperCDMS 25 kg Experiment f

GEODM AT DUSEL (7400)

transition from cavern

GEODM Ton Scale DUSEL

- Current mass of detectors : 5 Kg. Need 1500 kg!
 - Current production rate is 1 detector/month. Improve by 10X
 - The responsibilities are with Texas A&M and SLAC/Stanford
- Streamline detector fabrication (remove need for individual
 - Testing is more expensive (time wise, marching Only random sample testing if variability i
- Mass production with industrial
 - Already demonstrated
- Increase detector size. Few
 - Berkeley/Minnesota ex

Jeposition at TAMU

ion,.

1 Make and test. Economy of scale sger wafer procurement and testing

Other Direct Detection Technologies

EDELWEISS: Ge with Thermal Phonons

Thermal Phonons with ms timing (unlike µs CDMS)
Easier to fabricate than CDMS detectors
New detectors interleaved electrodes for alternating electric field for better surface charge collection
5kg total mass (400gm detectors in latest batch)

WIMP search last results (May 2010)

- Preliminary result : 1st analysis with same cuts as first 6 months; 2nd analysis ongoing
- x2 improved sensitivity in σ_{sl} (scale with stat): best limit 5×10-8 pb at $M_{\chi} \sim 80$ GeV

ฃเ

A. S. Torrentó - CEA/IRFU

- 3 evts near threshold in NR band, 2 outliers (1 @ 175 keV in NR band)
 - ...background starts to appear ?

Noble Liquid Status

- Single Phase Detectors: Rely on self shielding + position reconstruction/pulse shape discrimination (Ar):
 - No event by event discrimination (somewhat in Ar)
 - XMASS (Xe): 100kg fiducial (Japan)
 - MiniClean (Ar): 150kg fiducial (Construction in SNOLab)
 - DEAP-3600 : 1ton fiducial (Approved)
- Dual Phase Xenon: Self shielding + S2/S1
 - 85Kr (β source) + diffusive background such as Rn
 - Event by event NR/ER discrimination
 - Light collection efficiency at low energy is uncertain
 - Xenon100: 30 kg fiducial (Operating in Gran Sasso)
 - LUX: 100kg fiducial (construction in Home stake in 2011)
 - •Dual Phase Argon: Self shielding + S2/S1
 - •39Ar is a major issue. Last run limited by background
 •WARP: 140kg fiducial (commissioning in Gran Sasso)
 •ArDM: 500kg fiducial (commissioning at CERN)

Dual Phase Noble Liquid (Xenon/Ar)

XENON100

Goal (compared to XENON10):

- increase target ×10
- reduce gamma background ×100
- \rightarrow material selection & screening
- → detector design

Quick Facts:

- 161 kg LXe TPC (mass: 10 × Xe10)
- 62 kg in target volume
- active LXe veto (≥4 cm)
- 242 PMTs (Hamamatsu R8520)
- improved Xe10 shield (Pb, Poly, Cu, H₂O, N₂ purge)

Marc Schumann, UZH

First XENON100 Nonblind Data

- Energy cut: <30 keVnr
- make use of excellent selfshielding capability of LXe
- * 30 Kg Fiducial Mass

- Background data taken in stable conditions Oct-Nov 2009
- 11.2 life days
- Data was not blinded
- But: Cuts developed and optimized on calibration data only
- accepted by PRL arXiv:1005.0380

XENON10 vs XENON100

- Background free in 11.2 days after S2/S1 discimination
- Both plots show similar exposure

Marc Schumann, UZH

NR acceptance = 50% cut efficiency ~ 60-85 % (conservative) Background expectation << 1

Limit (Not Blind)

Marc Schumann, UZH

We are starting a run through the Kr-column in order to purify for 85-Kr, which dominates our background (after the active veto cut). We hope to start the next run, with lower backgrounds, by the end of October or beginning Nov - Laura Baudis

Surface assembly ongoing, Underground assembly in 2011 LUX Dark Matter Experiment - Summary

- Brown [Gaitskell], Case [Shutt], LBNL [Lesko], LLNL [Bernstein], Maryland [Hall], Rochester [Wolfs], Texas A&M [White], UC Davis [Svoboda/Tripathi], U South Dakota [Mei], Yale [McKinsey]
 - XENON10,ZEPLIN II (US),CDMS; v Detectors (Kamland/SuperK/SNO/Borexino); HEP/γ-ray astro
 - Also ZEPLIN III Groups in next phase
 - Co-spokespersons: Gaitskell (Brown) / Shutt (Case)
- 300 kg Dual Phase liquid Xe TPC with 100 kg fiducial
 - Using conservative assumptions: >99.4% ER background rejection for 50% NR acceptance, E>5 keVr (ER rejection is energy dependent) (Case+Columbia/Brown Prototypes + XENON10 + ZEPLIN II)
 - 3D-imaging TPC eliminates surface activity, defines fiducial
- Backgrounds:
 - Internal: strong self-shielding of PMT activity
 - Can achieve BG γ+β < 8x10⁻⁴ /keVee/kg/day, dominated by PMTs (Hamamatsu R8778).

2

- Neutrons (α,n) & fission subdominant
- External: large water shield with muon veto.
 - Very effective for cavern γ+n, and HE n from muons
 - Very low gamma backgrounds with readily achievable <10⁻¹¹ g/g purity.
- DM reach: 7x10⁻⁴⁶ cm² in 10 months

http://www.luxdarkmatter.org

Rick Gaitskell, Brown University, DOE

Two-phase Argon Detectors

WARP at LNGS

WIMP target: 140 kg LAr - S1 and S2 read-out with 41 x 3" PMTs - active LAr shield: ~ 8t, viewed by 300 PMTs

Detector had been installed in December 08 Some technical problems with HV Now again under commissioning at LNGS

ArDM at CERN

WIMP target: ~1 ton LAr

- S1 read-out with 14 x 8" PMTs
- direct electron readout via LEMs (thick macroscopic GEM)

Detector is being commissioned at CERN Underground operation: LS Canfranc in 2011

WARP: Liquid Argon

Similar technique as Xe: Prompt and Delayed Scintillation

Already hit background with less exposure than CDMS

Energy scale has a 3x uncertainty! Need to address this

Single Phase Liquid Noble Expts

XMASS (Lxe) mini-Clean (LAr)

- XMASS in Japan
 - 800kg LXe single phase
 - 100kg fiducial
- Mini-CLEAN in SNOLab
 - 500kg LAr single phase
 - 150 kg fiducial

COUPP Bubble Chamber

•Detection of bubble(s) induced by high dE/dx nuclear recoils

- •Set threshold to be insensitive to ER
- Low cost room temperature
- •Currently limited by Radon
- •Recent acoustic rejection of α is very promising

Low Mass WIMPs?

Some models predict low mass WIMPs from relaxed GUT scale mass unification assumptions

- Low Mass = Low Threshold!
- ■Noise level at ~ .1 keV

Ray Bunker, UCSB

- Well understood Background
 - ■10.4 keV x-rays from ⁷¹Ge
 - ■1.3 keV x-rays from ⁷¹Ge

CDMS Low Threshold & Reanalyzed Xenon 10 Reject This

WIMP Mass [GeV/c²]

US PASAG: SuperCDMS + 2 G2 Experiments

Scenario A (constant level of effort at the EY08 level)

G2: ~100kg (10⁻⁴⁶cm2), G3~1 ton

In dark matter, the current world-leading program is maintained, but world leadership would be lost toward the end of the decade:

- Two G2 experiments and the 100-kg SuperCDMS-SNOLA ent are supported. The technology selection for the G2 ex should 2 experiment
- ogress will be wever, due to the risk of Die to descoping to only one

Scenario B (constant level of a

In dark matter is maintained, but with some The current world-leading risk later in the decar

- exi at le in at le in us climents in us climents in vor adarentime. us climents in us climents and the 100-kg SuperCDMS-SNOLAB experiment he technology selection for the G2 experiments should enough to allow the construction of at least one G2 experiment y one G3 experiment can start in this decade. Based on what is known at this time, to mitigate risk of picking the wrong technology, a broad second-generation program is a higher priority than starting a

second G3 experiment.

DUSEL Initial Suite of Expts. – Ton Scale

At most 1 of these G3 experiments to be funded!

- GEODM 1.5 Ton Ge
- COUPP Bubble Chamber
- MAX Combination of Lxe and LAr
- LZ (LUX and ZEPLIN) 1.5 ton LXe

SuperCDMS, GEODM Schedule

Generic G2 and G3 Sensitivity Reach

LHC: The WIMP Maker

Will LHC discover SUSY before Direct Detection?

SuperCDMS Sensitivity Reach

•CDMS world leader in ultra low background experiment

•0 events in 05, 07 and 2 Events last run (20% chance of background)

•SuperCDMS,Soudan (16kg) and G2 SNOLab (100kg) with iZIPs

• β rejection >100 times better. Exciting results next year from Soudan

•G3: Ton-scale Germanium Observatory for Dark Matter (GEODM)

Funded by DUSEL Initial Suite of Experiments (ISE) engineering funds
Rapid progress at TAMU for automated high quality detector fabrication

•G2 Down select in 2011: Important in limited resources

PASAG endorses SuperCDMS + 2 G2 experiments (which ones?)
Exciting New Technologies: Noble Liquids (Xe/Ar), Bubble Ch
Background/Systematics in rare search come in surprising ways

•There may be 0 or 1 G3 (~ton scale) experiment in DUSEL

•Next decade will see one technology survive (which one?)

•Very Exciting LHC Complimentarity in next 5 Years

•LHC can't say SUSY particle is Dark Matter. Need DM experiments

121

•All permutations/commutations proposed! Unify to win quickly?

The Collaboration

California Institute of Technology Z. Ahmed, J. Filippini, S.R. Golwala, D. Moore, R.W. Ogburn

Case Western Reserve University

D. Akerib, C.N. Bailey, M.R. Dragowsky, D.R. Grant, R. Hennings-Yeomans

Fermi National Accelerator Laboratory

D. A. Bauer, F. DeJongh, J. Hall, D. Holmgren, L. Hsu, E. Ramberg, R.L. Schmitt, J. Yoo

Massachusetts Institute of Technology

E. Figueroa-Feliciano, S. Hertel, S.W. Leman, K.A. McCarthy, P. Wikus

NIST *

Queen's University P. Di Stefano *, N. Fatemighomi *, J. Fox *, S. Liu *, P. Nadeau *, W. Rau

Santa Clara University B. A. Young

Southern Methodist University J. Cooley

SLAC/KIPAC * E. do Couto e Silva, G.G. Godrey, J. Hasi, C. J. Kenney, P. C. Kim, R. Resch, J.G. Weisend Stanford University P.L. Brink, B. Cabrera, M. Cherry *, L. Novak, M. Pyle, A. Tomada, S. Yellin

Syracuse University M. Kos, M. Kiveni, R. W. Schnee

Texas A&M R. Mahapatra, M. Platt , K. Prasad, J. Sander,

K. Koch, A. Jastram

University of California, Berkeley

M. Daal, N. Mirabolfathi, A. Phipps, B. Sadoulet, D. Seitz, B. Serfass, K.M. Sundqvist

University of California, Santa Barbara R. Bunker, D.O. Caldwell, H. Nelson, J. Sander

University of Colorado Denver B.A. Hines, M.E. Huber

University of Florida T. Saab, D. Balakishiyeva, B. Welliver *

University of Minnesota J. Beaty, P. Cushman, S. Fallows, M. Fritts, O. Kamaev, V. Mandic, X. Qiu, A. Reisetter, J. Zhang

University of Zurich S. Arrenberg, T. Bruch, L. Baudis, M. Tarka

* new collaborators or new institutions in SuperCDMS

CDMS Collaboration

