Tokyo axion helioscope

Y. Inoue
International Center for Elementary Particle Physics, University of Tokyo

COSMO/CosPA2010, 30 September 2010, Hongo, U. Tokyo
Collaborators

M. Minowa, R. Ohta, T. Mizumoto, T. Horie
Department of Physics, School of Science, University of Tokyo

Y. Inoue
International Center for Elementary Particle Physics, University of Tokyo

A. Yamamoto
High Energy Accelerator Research Organization (KEK)

← Logo designed by Yuki Akimoto
What is the Axion?

• Strong CP problem:
 CP violating term in QCD
 \[\mathcal{L}_{\text{CP}} = \frac{\bar{\theta}}{32\pi^2} F_{a}^{\mu\nu} \tilde{F}_{a\mu\nu} \quad (\bar{\theta} \sim O(\pi)?) \]

 Neutron EDM: \(d_n < 2.9 \times 10^{-26} \text{ e cm} \) \((\bar{\theta} < 10^{-10}) \)

• Peccei–Quinn mechanism:

 \[\text{U}(1)_{\text{PQ}} + \text{SSB} \longrightarrow \begin{cases} \text{“Axion”} & \text{(NG boson)} \\ \bar{\theta} = \frac{\langle a \rangle}{f_a} = 0. \end{cases} \]
Principle of Axion helioscope

\[\mathcal{L}_{a\gamma\gamma} = g_{a\gamma} a \vec{E} \cdot \vec{B} \]
Principle of Axion helioscope

Conversion rate:

\[P_{a\rightarrow\gamma} = \frac{1}{2} g_{a\gamma}^2 \left| \int_0^L B e^{iqa} dz \right|^2 \]

\[\lesssim \frac{1}{4} g_{a\gamma}^2 B^2 L^2 \]

\[q = k_{\gamma} - k_a \]
Sumico V detector

- Refrigerators
- Superconducting magnet
- PIN photodiodes
- Gas container
- Vacuum vessel
- Turntable
 - $B = 4\,\text{T}$, $L = 2.3\,\text{m}$
 - 268A persistent current
 - 16 PIN photodiodes
 - Track the sun $\sim 12\,\text{hours/day}$
Sensitive to heavier axions by buffer gas

Conversion rate:

\[P_{a \rightarrow \gamma} = \frac{g_{a\gamma}^2}{2} \left| \int_0^L B e^{iqz} \, dz \right|^2 \sim \frac{g_{a\gamma}^2 B^2}{q^2} \sin^2 \frac{qL}{2} \leq \frac{g_{a\gamma}^2 B^2 L^2}{4} , \]

\[q = k_\gamma - k_a \approx \frac{m_\gamma^2 - m_a^2}{2E} . \]

In vacuum, coherence is lost for \(m_a \gtrsim \sqrt{\pi E/L} \ldots \)

\[\downarrow \]

The effective photon mass in buffer gas:

\[m_\gamma = \sqrt{\frac{4\pi \alpha N_e}{m_e}} . \]

\(N_e \): electron density
- X-ray window (detector side)
- Ensure temperature uniformity along the container by:
 - Suspending container body in vacuum
 - Thermal contact at one end ← Active temperature control
 - High thermal conductivity layer
Buffer gas container

- Welded $4 \times$ st. steel 304
 $21.9 \times 17.9 \times 2300 \text{ mm}^3$
 square pipes

- Wrapped with
 99.999% pure Al
 0.1-mm thick $\times 2$ layers

- Thermal conductivity
 (measured)
 $\gtrsim 10^{-2} \text{W/K @ 5 K, 4 T}$
X-ray window

- $25 \mu m$ Be foils with $1 \mu m$ polyimide coating
- Supported by Ni grid
- Withstands up to 0.3 MPa
- Transmits $\gtrsim 80\%$ for $E > 3 \text{ keV}$
Gas handling system

- He gas
- Evacuated line
- Rupture disc
- X-ray window
- Gas container
- Heat exchanger (40K, 5K)
- Diaphragm pump
- Piezo valves
- Yokogawa MU101
- PCI DAC card +amp
- EIA232
- TCP/IP
- PC1
- PC2
- Vacuum vessel
Helium density time chart

Helium density [mol/m³]
Photon mass [eV]

start
encoder broken
end
quench
end of the 1st unmanned tracking
2nd unmanned tracking

Dec Jan Feb Mar Apr
2007 2008
PIN photodiode X-ray detector

- Inside OFHC shield @ $T = 60$ K
- 16 PIN photodiodes
 4 PIN/module
- chip: Hamamatsu S3590-06-SPL
- size:
 $11 \times 11 \times 0.5$ mm3/PIN
- active area $> 9 \times 9$ mm2/PIN
- inactive surface $< 0.35 \mu$m

[T. Namba et al., NIMA 489(220)224]
[Y. Akimoto et al., NIMA557(2006)684]
Data acquisition system

- 16 input channels
- Waveform recording:
 - PIN photodiode ➔ Charge sens. preamp. ➔ Flash ADC
- Offline shaping
- Trigger:
 - shaper + leading edge discr.
- Precise live time
- Control: CAMAC
Sumico & CAST side-by-side

<table>
<thead>
<tr>
<th>Sumico</th>
<th>CAST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hongo, U. Tokyo</td>
<td>CERN</td>
</tr>
<tr>
<td>$4 , T \times 2.3 , m @ 5 , K$</td>
<td>$9 , T \times 9.26 , m @ 1.9 , K$</td>
</tr>
<tr>
<td>12 hours/day</td>
<td>2 $\times 1.5$ hours/day</td>
</tr>
<tr>
<td>$^4\text{He} \ (m_a \lesssim 2 , \text{eV})$</td>
<td>$^4\text{He}+^3\text{He} \ (m_a < 1.1 , \text{eV})$</td>
</tr>
</tbody>
</table>
Exclusion plots

- Lazarus et al. (PRL69 (1992) 2333)
- SOLAX, COSME, CDMS
- DAMA
- Solar age
- Sumico (95%CL)
- Phase I—vacuum (PLB434 (1998) 147)
- Phase II—low density (PLB536 (2002) 18)
- Phase III latest (PLB668 (2008) 93)
- CAST I (PRL94 (2005) 121301)
- CAST II 4He (JCAP0902:008, 2009)
- CAST II 3He preliminary
- Axion models $(E/N = 8/3)$
Exclusion plots

- **Lazarus et al.** (PRL69, 1992, 2333)
- SOLAX, COSME, CDMS
- DAMA
- **Sumico** (95% CL)
- **Phase I—vacuum** (PLB434, 1998, 147)
- **Phase II—low density** (PLB536, 2002, 18)
- **Phase III latest** (PLB668, 2008, 93)

Axion models (E/N = 8/3)

- **CAST I** (PRL94, 2005, 121301)
- **CAST II** (JCAP0902:008, 2009)
- **CAST II** 4He (preliminary)
- **Lazarus et al.** (PRL69, 1992, 2333)

Solar age

- **CAST II** 3He
- **SOLAX**, COSME, CDMS
- **CDMS**
- **DAMA**

Axion models

- **(E/N = 8/3)**

Sumico (95% CL)
Future plan

Sumico (95% CL)

Solar age

SOLAX, COSME, CDMS

DAMA

CAST I CAST II

CAST II 4He
CAST II 3He preliminary

Lazarus et al.

Axion models

\(g_{a\gamma} \propto (BL)^{-1/2} \left(\frac{\text{bg rate}}{\text{time} \times \text{area}} \right)^{1/8} \)
Sumico Phase III upgrades

Gas density control has been quite successful so far. We want to make 4He density higher and higher! But higher density caused new problems...

- Reworked internal and external pipelines for safer operation.
- But a thermoacoustic oscillation set in at higher densities.
 - Introduced a fast pressure gauge to monitor oscillation and bellows in the room temperature section.
- Unacceptable elevation-angle dependent temperature difference observed at higher densities.
 - Introduced new heat exchangers. (Now testing)
Sumico Phase III upgrades

New heat exchangers
Summary

• Sumico, aka Tokyo axion helioscope, results:
 Phase I: vacuum
 \[g_{a\gamma} < 6.0 \times 10^{-10} \text{GeV}^{-1}, \quad m_a < 0.03 \text{ eV} \]

 Phase II: low density \(^4\text{He}\)
 \[g_{a\gamma} < 6.8-10.9 \times 10^{-10} \text{GeV}^{-1}, \quad 0.05 < m_a < 0.27 \text{ eV} \]

 Phase III: cold dense \(^4\text{He}\)
 \[g_{a\gamma} < 5.6-13.4 \times 10^{-10} \text{GeV}^{-1}, \quad 0.84 < m_a < 1.00 \text{ eV} \]

• Sumico Phase III will explorer further up to \(m_a \lesssim 2 \text{ eV}\).
 Now started cooling!
Thank you
Notes on buffer gas

- "Helium-4" is used
- Temperature is kept high enough above the critical point \((p_c = 0.227 \text{ MPa}, T_c = 5.1953 \text{ K})\)
- X-ray absorption and decoherence due to gravity are not fatal even at \(m_\gamma \sim 2 \text{ eV}\)

\[
m_\gamma = \sqrt{\frac{4\pi \alpha N_e}{m_e}}
\]
Resonance width at higher axion masses

\[P_{a\to\gamma} = \frac{g_{a\gamma}^2 B^2}{q^2} \sin^2 \frac{qL}{2}; \quad q \approx \frac{m_{\gamma}^2 - m_a^2}{2E}; \quad m_{\gamma}^2 = \frac{4\pi\alpha N_e}{m_e} \]

\[|qL| < 2\pi \quad \rightarrow \quad \frac{\delta N_e}{N_e} < \frac{4\pi E}{m_a^2 L} \sim O(10^{-3}) \quad \text{for } m_a \sim 2 \text{ eV}. \]

- stabilize $T + \text{control } p$.
 \[N_{He} \sim \frac{p}{RT} \]
- Many data points to scan
 \[\rightarrow \text{computer control} \]
After quench, before explosion...

- When the superconducting magnet quenches, its temperature rises up to 50–60 K within a few seconds.

- Pressure change is slower:
 \[
 \begin{align*}
 \times 3 & \text{ in 2 minutes} \\
 \times 7 & \text{ in 2 hours}
 \end{align*}
 \]

\[
\rightarrow \quad \text{pipe line design}
\]
Pressure change after quench on Apr 23 2008
• Hydrodyne cryogenic precision burst disc
• Protects X-ray window from over pressure
• Breaks at 0.25 MPa±5% @ 5 K
Energy spectrum

\[\chi^2(m_\alpha) = \sum_{m_\gamma=m_\gamma,\text{min}}^{m_\gamma,\text{max}} \sum_{20 \text{ keV}}^{20 \text{ keV}} \left(\frac{N_{\text{solar}}(E, m_\gamma) - N_{\text{bg}}(E, m_\gamma) - N_{\text{theo}}(E, q)}{\sigma(E, m_\gamma)} \right)^2 \]