First CMB constraints on the inflationary reheating temperature

Christophe Ringeval

Institute of Mathematics and Physics Centre for Cosmology, Particle Physics and Phenomenology Louvain University, Belgium

Tokyo, 27/09/2010

CMB constraints on reheating

Conclusion

Observing inflation

Cosmological perturbations Example: single field inflation Hidding z_{end} behind a pivot The reheating parameter R_{rad}

CMB constraints on reheating

Reheating consistent predictions for massive inflation CMB and slow-roll parameters Inferring reheating from CMB data WMAP7 constraints on large field reheating The reheating temperature

Conclusion

J. Martin and CR: arXiv:1004.5525

J. Martin, CR and R. Trotta: arXiv:1009.4157

Cosmological perturbations of inflationary origin

UC

• CMB and LSS sourced by ζ (curvature) and h (tensor)

$$\mathcal{P}_{\zeta}(k) = \frac{k^3}{2\pi^2} \left| \zeta_{\boldsymbol{k}} \right|^2, \qquad \mathcal{P}_h = \frac{2k^3}{\pi^2} \left| h_{\boldsymbol{k}} \right|^2$$

Cosmological perturbations

Example: single field

inflation

Hidding z_{end} behind a pivot The reheating parameter

 $R_{\rm rad}$

CMB constraints on reheating

Conclusion

Makes predictions for the primordial power spectra

- Knowing $V(\phi)$ + FLRW gives $\phi(N)$ (background)
- Knowing $\phi(N)$ gives the evolution of $\mu_{k} \equiv a\sqrt{2}\dot{\phi}\zeta_{k}$

$$\dot{\phi} \equiv \frac{\mathrm{d}\phi}{\mathrm{d}N} \quad \Rightarrow \ddot{\mu}_{\boldsymbol{k}} + \left(1 - \frac{1}{2}\dot{\phi}^2\right)\dot{\mu}_{\boldsymbol{k}} + \frac{1}{H^2}\left[\left(\frac{k}{a}\right)^2 - \frac{(a\dot{\phi})''}{a^3\dot{\phi}}\right]\mu_{\boldsymbol{k}} = 0$$

• ζ_k is conserved after Hubble exit $\Rightarrow \mathcal{P}_{\zeta}$

- What is the actual value of k/a?
 - The one we are interested in today in Mpc^{-1}

$$\frac{k}{a} = \frac{k}{a_0} (1 + z_{\text{end}}) e^{N_{\text{end}} - N}$$

• Depends on a background quantity: $z_{end} = ?!$

Cosmological perturbations Example: single field inflation Hidding z_{end} behind a pivot The reheating parameter

 $R_{\rm rad}$

CMB constraints on reheating

Conclusion

• Pick up a particular scale
$$k_*/a_0 = 0.05 \,\mathrm{Mpc}^{-1}$$

$$\frac{k}{k_*} = \frac{k/a_0}{0.05 \,\mathrm{Mpc}^{-1}}$$

Expand the power spectra around the pivot: ex slow-roll

$$\mathcal{P}_{\zeta}(k) = \frac{H_*^2}{8\pi^2 M_{\rm Pl}^2 \epsilon_{1*}} \left[1 - 2\left(C+1\right) \epsilon_{1*} - C\epsilon_{2*} - \left(2\epsilon_{1*} + \epsilon_{2*}\right) \ln \frac{k}{k_*} \right]$$

■ All "*" quantities are evaluated at N_* such that: $k_* = a(N_*)H(N_*)$

$$\frac{k_*}{a_0} = \frac{e^{N_* - N_{\text{end}}} H(N^*)}{1 + z_{\text{end}}}$$

• Solving for N_* requires z_{end}

Inflationary predictions $\Leftarrow z_{end} \Leftarrow$ reheating model

Cosmological perturbations Example: single field inflation Hidding z_{end} behind a pivot The reheating parameter R_{rad}

CMB constraints on reheating

Conclusion

 \blacksquare For instantaneous transitions: $\inf \to reh \to rad \to mat$

$$1 + z_{\text{end}} = (1 + z_{\text{eq}}) \left(\frac{\rho_{\text{reh}}}{\rho_{\text{eq}}}\right)^{1/4} \frac{a_{\text{reh}}}{a_{\text{end}}} = \left(\frac{\rho_{\text{end}}}{\rho_{\text{ro}}}\right)^{1/4} \frac{1}{R_{\text{rad}}}$$
$$\frac{R_{\text{rad}}}{R_{\text{rad}}} \equiv \frac{a_{\text{end}}}{a_{\text{reh}}} \left(\frac{\rho_{\text{end}}}{\rho_{\text{reh}}}\right)^{1/4}$$

Quantifies deviations from a radiation-like reheating era

• In terms of reheating duration: $\Delta N \equiv N_{\rm reh} - N_{\rm end}$

$$\overline{w}_{\rm reh} \equiv \frac{1}{\Delta N} \int_{N_{\rm end}}^{N_{\rm reh}} \frac{P(n)}{\rho(n)} dn \quad \Rightarrow \quad \ln R_{\rm rad} = \frac{\Delta N}{4} \left(-1 + 3\overline{w}_{\rm reh} \right)$$

• In terms of energy densities

$$\ln R_{\rm rad} = \frac{1 - 3\overline{w}_{\rm reh}}{12 + 12\overline{w}_{\rm reh}} \ln\left(\frac{\rho_{\rm reh}}{\rho_{\rm end}}\right)$$

C Reheating consistent predictions for massive inflation

Observing inflation

CMB constraints on reheating Reheating consistent predictions for massive inflation CMB and slow-roll parameters Inferring reheating from CMB data WMAP7 constraints on large field reheating The reheating temperature

Conclusion

Slow-roll trajectory for $V(\phi) = m^2 \phi^2$

$$\phi^2(N) \simeq \phi_{\text{end}}^2 - 4(N_{\text{end}} - N), \quad \phi_{\text{end}}^2 = 2, \quad \epsilon_1 = \frac{2}{\phi^2}, \quad \epsilon_2 = \frac{4}{\phi^2}$$

Solving the pivot crossing for $\Delta N_* = N_{\rm end} - N_*$

- Friedmann-Lemaître: $\rho_{\text{end}}(\Delta N_*) = \frac{3}{2} \frac{V_{\text{end}}}{V_*} \times 3H^2_*(3 \epsilon_{1*})$
- For a given $R_{\rm rad}$, ΔN_* solution of the transcendental equation

$$\Delta N_* - \frac{1}{4} \ln(8\pi^2 P_*) + \frac{1}{4} \ln\left(\frac{3}{\epsilon_{1*}} \frac{V_{\text{end}}}{V_*} \frac{3 - \epsilon_{1*}}{3 - \epsilon_{1\text{end}}}\right) = \ln R_{\text{rad}} - \ln\left(\frac{k_*/a_0}{\rho_{r_0}^{1/4}}\right)$$

• Particular case $\overline{w}_{reh} = 0$ (parametric oscillations)

$$\ln R_{\rm rad} = \frac{1}{12} \ln \left(\frac{\rho_{\rm reh}}{\rho_{\rm end}} \right)$$

Conclusion

• Massive inflation with $\overline{w}_{reh} = 0$

CMB constraints on reheating

Reheating consistent predictions for massive inflation CMB and slow-roll

parameters

Inferring reheating from CMB data WMAP7 constraints on

large field reheating The reheating temperature

Conclusion

- General reheating (no assumptions on \overline{w}_{reh})
 - Occurs after inflation and before BBN: $\rho_{nuc} \leq \rho_{reh} \leq \rho_{end}$
 - GR energy conditions: $-1/3 < \overline{w}_{reh} \leq 1$.
- $\blacksquare \ \forall \ \text{inflationary model} \ V(\phi)$
 - Numerical integration background + linear perturbations
 - Computes the power spectra (FieldInf)
 - Evolves the cosmological perturbations (CAMB)
 - MCMC data analysis (CosmoMC) + evidence (MultiNest)
- Inflationary cosmological parameters
 - Usual cosmo params + potential parameters -1 (normalisation)
 - Amplitude of the scalar perturbations: P_*
 - Rescaled reheating parameter $R \equiv R_{\rm rad} \rho_{\rm end}^{1/4}$

WMAP7 constraints on large field reheating

Large field models $V(\phi) \propto \phi^p$ with priors

Posteriors at 95% of confidence level

-23

-22

-21

 ${\rm ln}(\!\rho_{end}^{-24}\!/\!M_{pl}^4)$

-27

-26

-25

 $\ln R > -28.9, \quad p < 2.2, \quad 4.4 \times 10^{15} \text{GeV} < \rho_{\text{end}}^{1/4} < 1.2 \times 10^{16} \text{GeV}$

In(R)

10 / 12

Observing inflation

CMB constraints on reheating Reheating consistent predictions for massive

inflation CMB and slow-roll parameters Inferring reheating from CMB data WMAP7 constraints on

large field reheating

The reheating temperature

Conclusion

CMB constraints on reheating

Reheating consistent predictions for massive inflation CMB and slow-roll parameters Inferring reheating from CMB data WMAP7 constraints on large field reheating

The reheating temperature

Conclusion

• Inferring $\rho_{\rm reh}$ requires extra-assumptions

• Parametric oscillations in $V(\phi) \propto \phi^p \Rightarrow \overline{w}_{reh} = \frac{p-2}{p+2}$

New posteriors: at 95% CL

$$\rho_{\rm reh}^{1/4} > 17.3 \,{\rm TeV}$$

CMB constraints on reheating

Conclusion

- New approach of CMB data analysis to test inflationary models
 - Goes behond slow-roll or power law functional forms for P(k)
 - Directly infers the inflationary "physical parameters"
- **Reheating model with** $R_{\rm rad}$ (role similar to τ)
 - Does not have small effects (ΔN_*)
 - ◆ No longer a nuisance: constrained by WMAP7, also for SF

$$\ln R > -23.1 \quad \Rightarrow \quad \begin{cases} \rho_{\rm reh}^{1/4} > 390 \,\text{GeV} & (\overline{w}_{\rm reh} = -0.2) \\ \rho_{\rm reh}^{1/4} > 890 \,\text{TeV} & (\overline{w}_{\rm reh} = -0.3) \end{cases}$$

Application to Bayesian evidence

• Comparison SF/LF for WMAP7 3:1

