Generalized Stochastic Inflation

Manabu Yoshimatsu and Jun'ichi Yokoyama

Research Center for the Early Universe, the University of Tokyo Nov. 08 7th RESCEU Symposium @ Koshiba Hall

Introduction

Subject of Our Research

A MONODROMY BRANE INFLATION MODEL, which was set up by E. Silverstein and A. Westphal PRD 77 106006, arXiv 0803.3085)

The Property of the Model

Be able to go clear the Lyth Bound

What is *Lyth Bound*??

A inflaton ϕ 's variance between end and start of the inflaiton is greater than M_{Pl} , if the gravity wave can be detected in CMB. D.H.Lyth PRL **78** 1861(1997)

Purpose of Our Research

To investigate a condition whether eternal inflation would occur or not, using the stochastic method to deal in cuantum fluctuations of the system.

About Monodromy Model(1)

Ordinary Brane Inflation

Inflaton $\phi \longleftrightarrow$ Brane Position

 $\Longrightarrow \phi$ can move only compactified space

 \Longrightarrow Difficult to go clear the Lyth Bound

 \implies Difficult to Explain Our Universe

 Brane Monodromy Inflation Model
 It can retain the Large Field Range by atypical Compactification.

About Monodromy Model(2)

Simplified Explanation of Monodromy's Topology

About Monodromy Model(3)

Mechanism of Monodromy Inflation

 $\begin{cases} \circ \text{ Winding Length } L_{4B} = \sqrt{L_{u_2}^2} + M^2 L_x^2 u_1^2 \\ \circ \text{ Energy } \sim L_{4B} \times \text{String Tension} \times \text{ Brane Tension} \end{cases}$

→ Lyth Bound is met!!

Conclusion

- 1. Inflation happens while a winding brane moves in u_1 direction.
- 2. Brane's u_1 position plays Inflaton Field.

About Monodromy Model(4)

Definition of Physical Variables

 g_s

 f_6

- $L_x, L_{u_1}, L_{u_2} \longrightarrow$ Size of interior space
- $\beta = L_{u_2}/L_{u_1} \longrightarrow$ Ratio of the Size of interior space
 - $M \longrightarrow Winding number as brane go round$
- $\frac{1}{\alpha'} = \frac{(2\pi)^{\gamma}}{2}g^2 \longrightarrow$ String Tension
 - ----> Quantum Flux Number

About Monodromy Model(5)

- Dynamical Equations
 - Action

 $S = -\Xi \int d^4x \left(\sqrt{(1 + \Theta u_1^2) (1 - \Gamma \dot{u}_1^2)} - 1 \right)$

- Equation of Motion $(1 + \Theta u_1^2) \Gamma \ddot{u}_1 = -(1 - \Gamma \dot{u}_1^2) (3H(1 + \Theta u_1^2) \Gamma \dot{u}_1 + \Theta u_1)$
- Friedmann Equation $H^{2} = \frac{8\pi\Xi}{3} \left(\sqrt{(1 + \Theta u_{1}^{2}) / (1 - \Gamma \dot{u}_{1})} + \sqrt{(1 + \Theta u_{1}^{2}) (1 - \Gamma \dot{u}_{1})} - 1 \right)$
- ► Effective Physical Variables $\Gamma = \alpha' L_u^2 / \beta$ → Plays as time coordinate $\Theta = M^2 L_x^2 / \beta L_u^2$ → Plays as field's mass $(M \uparrow \Rightarrow \Theta \uparrow)$ $\Xi = \sqrt{\beta L_u} / (2\pi)^4 g_s \alpha'^2$ → Plays as String Coupling Constant $(g_s \uparrow \Rightarrow \Xi^{\uparrow})$

About Monodromy Model(6)

Canonical Approximation

If $\Gamma \dot{u}_1^2 \ll 1$, we can approximate the kinetic term canonically.

About Eternal Inflation(1)

About Eternal Inflation(2)

Supplement Stochastic Inflation

- Purpose
 - To deal in quantum fluctuations of Inflaton.
 - To acquire Effective theory

which isn't so much difficult.

Method

- Inflation is so macroscopic phenomenon.
- Field's Large Scale behavior

We can divide fields into long wavelength mode and short wavelength mode.

Long mode ... obeys classical motion.

Short mode ... represents quantum fluctuation.

About Eternal Inflation(3)

Supplement Stochastic Inflation

- How should we deal in short wavelength mode?
 - \circ The expectation value of short mode $\sigma(x)$

in Bunch-Davis Vacuum is as follows;

$$\langle \sigma(x_1)\sigma(x_2)
angle = rac{H^3}{4\pi^2} j_0(\epsilon a H |x_1 - x_2|) \delta(t_1 - t_2)$$

 $j_0(x)$: Spherical Bessel Function

• Then we can regard short mode as Brownian motion.

The equation of motion is modified by addition of white noise $\boldsymbol{n}(t)$

K. Nakao, Y. Nambu, M. Sasaki(1988)

About Eternal Inflation(4)

Numerical Simulation

Equation of Motion is modified in a way that de-Sitter fluctuation is duplicated if we approximate the kinetic term as canonical.

$$(1 + \Theta u_1^2) \Gamma \ddot{u}_1 + (1 - \Gamma \dot{u}_1^2) (3H (1 + \Theta u_1^2) \Gamma \dot{u}_1 + \Theta u_1)$$

= $\{ (1 + \Theta u_1^2) \Gamma^2 / \Xi^2 \}^{\frac{1}{4}} H^{\frac{5}{2}} n(t)$

We could deal in Non-Canonical Effect with accuracy !!How determinate ??Place of stochastic solution
when classical solution
sonverged at the origin. $\phi \approx 0 \rightarrow \text{Stochastic Effect is}$
negligible
 $\phi \gg 1 \rightarrow \text{Stochastic Effect is}$
influential

About Eternal Inflation(5)

Result(Red means stochastic effect is influential)

Result and Discussions

About Monodromy Model

- Very useful model which is go clear Lyth Bound.
- $^\circ\,$ But it is so strange that the brane has large winding number M

About Eternal Inflation

- If $\frac{\Theta^3}{\Gamma^2 \Xi^3} = \frac{g_s M^6}{(2\pi)^7} \frac{L_x^{10}}{L_{u_1}^3 L_{u_1}^8} \gtrsim 10$ is met, we confirmed that eternal inflation occurs!!
- \circ Considering expansion effect in physical volume, the probability of large M is so high, then we can conclude that *Monodromy Model is very*

down-to-earth idea to explain our universe !!

Appendix Metric of Monodromy

Details of Model

Extra dimensions are compactified as Nil-manifold in 10 dimensional spacetime (type IIA).

$$\frac{ds^2}{\alpha'} = L_{u_1}^2 du_1^2 + L_{u_2}^2 du_2^2 + L_x \left(dx' + Mu_1 du_2\right)^2 \quad x' = x - \frac{M}{2} u_1 u_2$$
Compactification by isometry groups
$$\begin{cases} t_x : (x, u_1, u_2) \simeq (x + 1, u_1, u_2) \\ t_{u1} : (x, u_1, u_2) \simeq (x - M/2, u_1 + 1, u_2) \\ t_{u2} : (x, u_1, u_2) \simeq (x + M/2, u_1, u_2 + 1) \end{cases}$$

Property of model T2(u2 and x' direction) attach to S1(u1)

Twisted Torus!!