HOLOGRAPHIC MEASURE OF THE MULTIVERSE

Alex Vilenkin

Tufts Institute of Cosmology

Tokyo, November 2008

"String theory landscape"

String theory suggests ~ 10^{500} different vacua with different low-energy physics.

Bousso & Polchinski (2000) Susskind (2003)

Eternally inflating "multiverse"

Bubbles of all types will be produced.

Everything that can happen will happen an infinite number of times. Need a cutoff to compare these infinities.

Results are strongly cutoff-dependent.

The measure problem

This talk:

- Spacetime structure.
- Some measure proposals and their problems.
- Measure from fundamental theory?

- Bubbles nucleate and expand at nearly the speed of light.
- Inflating and terminal bubbles
- Eternal geodesics

MEASURE PROPOSALS AND THEIR PROBLEMS

Global time cutoff:

Count only events that occurred before some time *t*.

Garcia-Bellido, Linde & Linde (1994); A.V. (1995)

Possible choices of t :

(i) proper time t = τ along geodesics orthogonal to Σ;
(ii) scale-factor time, t = a.

 $t \rightarrow \infty$ \implies steady-state evolution.

The distribution does not depend on the choice of Σ -- but depends on what we use as *t*.

Proper time cutoff leads to "youngness paradox"

Linde & Mezhlumian (1996), Guth (2001), Tegmark (2004), Bousso, Freivogel & Yang (2007)

Volume in regions of any kind grows as

$$V_j \propto e^{\kappa \tau}, \quad \kappa \sim H_{\max} \sim M_{Pl}.$$

Driven by fastestexpanding vacuum

Observers who evolve faster by $\Delta \tau$ are rewarded by a huge volume factor. $\Delta \tau = 1 \,\text{Gyr} \implies \exp(\kappa \,\Delta \tau) = \exp(10^{60})$

We should have evolved at a much earlier cosmic epoch. Ruled out.

Scale-factor cutoff

De Simone, Guth, Salem & A.V. (2008)

Growth of volume:

Salem & A.V. (2) $V_j \propto a^{\gamma}, \quad \gamma \approx 3.$ $(3 - \gamma) \propto \lambda_{\min} \leftarrow \frac{\text{decay rate of the}}{\text{slowest-decaying vacuum}}$

A mild youngness bias: for $\Delta \tau = 1$ Gyr the volume is enhanced only by ~ 20%.

"Stationary" measure

Linde (2007)

Pocket-based measure

Garriga, Schwartz-Perlov, A.V. & Winitzki (2005) Easther, Lim & Martin (2005)

Large inflation inside bubbles is rewarded:

 $P_j \propto Z_j^3$ expansion factor during inflation

Feldstein, Hall & Watari (2005) Garriga & A.V. (2006) Graesser & Salem (2007)

Parameters correlated with the shape of the inflaton potential are driven to extreme values. . In particular the amplitude of density perturbations *Q*.

Causal patch measure

Bousso (2006) Susskind (2007)

Include only observations in spacetime region accessible to a single observer.

Depends on the initial state.

		Youngness paradox	Q catastrophe	Dependence on initial state
	Proper time cutoff			
\bigstar	Scale factor cutoff			
	Pocket-based measure			
	Stationary measure			
-	Causal patch measure			

Probability distribution for Λ in scale factor cutoff measure

De Simone, Guth, Salem & A.V. (2008)

 $dV(\Lambda) = C(\Lambda)d\Lambda a^{\gamma-1}da \longleftarrow$

Volume thermalized in scale factor interval *da*.

 $\gamma \approx 3$

Assumptions: • $C(\Lambda) \approx const$ in the range of interest.

- Number of observers is proportional to the fraction of matter clustered in large galaxies ($M \ge 10^{12} M_{\odot}$).
- Observers do their measurements at a fixed time $\Delta \tau = 5 \, \text{Gyr}$ after galactic halo collapse.

Probability distribution for Λ De Simone, Guth,in scale factor cutoff measureSalem & A.V. (2008)

Can the measure be derived from fundamental theory?

Holographic measure of the multiverse

Based on work with Jaume Garriga

• The dynamics of the multiverse may be encoded in its future boundary (suitably defined).

Inspired by holographic ideas: Quantum dynamics of a spacetime region is describable by a boundary theory.

 The measure can be obtained by imposing a UV cutoff in the boundary theory. *Related to scale-factor cutoff.*

First review the holographic ideas.

AdS_{D+1}/CFT_D correspondence

String Theory in AdS is equivalent (dual) to a CFT on the boundary.

Maldacena (1998) Susskind & Witten (1998)

Euclidean AdS:

 $ds^2 = dr^2 + \sinh^2 r \, d\Omega_D^2$

Regulate boundary theory:

Integrate out short-wavelength modes of wavelength $\lambda_B < \xi$.

The corresponding 4D modes have minimum wavelength

 $\lambda_{\min}(r) = \xi \sinh r.$

$$\implies \sinh r_{\max} = \ell / \xi$$
$$r_{\max} \to \infty \iff \xi \to 0$$

Variation of $r_{max} \Leftrightarrow RG$ flow in the boundary theory.

CdL/CFT correspondence

Freivogel, Sekino, Susskind & Yeh (2006) (FSSY)

Bubble interior: $ds^2 = -dt^2 + a^2(t)(dr^2 + \sinh^2 r \, d\Omega_2^2)$ AdS₃

FSSY: The 4D theory inside the bubble is equivalent to a Euclidean 2D field theory on Γ .

The boundary theory includes a Liouville field $L(\Omega)$, which describes fluctuations of the boundary geometry: $d\Omega_2^2 \Rightarrow e^{L(\Omega)} d\Omega_2^2$.

This additional field plays the role of time variable t, as in Wheeler-DeWitt equation, while r is recovered from RG flow.

dS/CFT correspondence

Strominger (2001)

The 4D theory describing an asymptotically de Sitter space is equivalent to a 3D Euclidean theory at the future infinity i_{+} .

But dS space is metastable, so there is no such thing as asymptotically dS space.

The actual future infinity looks like this:

Our conjecture:

The 4D theory describing the evolution of the multiverse is equivalent to a 3D Euclidean theory at the future infinity (suitably defined).

Defining future infinity

- Geodesic congruence projects bubbles onto Σ . \Rightarrow Map of future infinity.
- Excise images of Minkowski bubbles. (They are described by the 2D boundary degrees of freedom.) (FSSY)
- AdS bubbles can be excised in a similar way (?).

The future infinity \mathcal{E} includes eternal points and the boundaries of excised terminal bubbles.

The metric $g_{ij}(\mathbf{x})$ on Σ defines a metric on \mathcal{E} . Different choices of Σ are related by conformal transformations.

Structure of the future boundary \mathcal{E}

- Each bubble becomes a fractal "sponge" in the limit.
- Terminal bubbles correspond to holes (with 2D CFTs on their boundaries).
- Bubbles correspond to instantons of the 3D theory on \mathcal{E} .

Boundary measure

Renormalization of boundary theory:

Integrate out short-wavelength modes of wavelength $\lambda_0 < \xi$. Boundary UV cutoff The corresponding 4D modes have minimum wavelength

$$\lambda_{\min}(\vec{x},t) = a(\vec{x},t)\,\xi.$$

Require $\lambda_{\min} < \ell$ Bulk resolution scale

 $\implies a_{\max} = \ell / \xi \quad \text{-- scale factor cutoff}$ $\xi \to 0 \quad \Rightarrow \quad a_{\max} \to \infty.$

UV cutoff on the boundary \iff scale factor cutoff in 4D.

SUMMARY

- Inflation is a never ending process, with new "bubble universes" constantly being formed.
- All possible events will happen an infinite number of times.
 To calculate probabilities, we need to regulate the infinities.
- The scale factor cutoff appears to be the most promising measure proposal. It does not suffer from any paradoxes and gives a prediction for Λ in good agreement with the data.
- This measure may be obtained by imposing a UV cutoff in a holographic boundary theory.