

Inflation, Dark Energy

\&

Extra Dimonsions
w/Daniel Wesley (Cambridge)

This work complements but is NOT directly related to:

> no-go theorems based on SuSY, SuGRA or based on ε or η problems or constructions leading to string landscape

This work complements but is NOT directly related to:

no-go theorems based on SuSY, SuGRA or based on ε or η problems or constructions leading to string landscape

more closely related to:

constraints on static deS

G. Gibbons (1985)
J. Maldacena \& C. Nunez (2001)
S. Giddings, S. Kachru and J. Polchinski (2002)
S. Giddings and A. Maharana (2005)

Carroll, Geddes, Hoffman, Wald (2002)

For concreteness, let's consider models satisfying four conditions:

1) GR Condition: Einstein GR in 4d and higher-d
2) Flatness Condition: $4 d$ effective theory is spatially flat
3) Boundedness Condition: extra dimension are compact
4) Metric Condition:

$$
d s^{2}=e^{2 \Omega}\left(-d t^{2}+a^{2}(t) d x^{2}\right)+e^{-2 \Omega} g_{a b} d y^{a} d y^{b}
$$

$$
\text { where } R\left(g_{a b}\right)=0
$$

For concreteness, let's consider models satisfying four conditions:

1) GR Condition: Einstein GR in 4d and higher-d
2) Flatness Condition: $4 d$ effective theory is spatially flat
3) Boundedness Condition: extra dimension are compact
4) Metric Condition:

$$
\begin{array}{r}
d s^{2}=e^{2 \Omega}\left(-d t^{2}+a^{2}(t) d x^{2}\right)+e^{-2 \Omega} g_{a b} d y^{a} d y^{b} \\
\text { where } R\left(g_{a b}\right)=0
\end{array}
$$

5) PLUS the Null Energy Condition (NEC):

$$
\begin{aligned}
& T_{M N} n^{M}{ }_{n}{ }^{N} \geq 0 \text { for every null } n^{M} \\
& \quad(\text { or } \rho+p \geq 0 \text {) }
\end{aligned}
$$

Can prove some surprising no-go theorems ... with the right bag of tricks:

Do all calculations in Einstein frame so interpretation is unambiguous

Treat $T_{\mu \nu}$ space-space components as block diagonal

$$
T_{\mu \nu}=\left(\begin{array}{ccccccc}
\rho & & & & & & \\
& -p_{3} & 0 & 0 & & & \\
0 & -p_{3} & 0 & & & \\
& 0 & 0 & -p_{3} & & & \\
& & & & -p_{k} & 0 & 0 \\
& & & & 0 & \cdots & 0 \\
& & & & 0 & 0 & -p_{k}
\end{array}\right)
$$

where $p_{3}=\frac{1}{3} \operatorname{Tr} T_{i j}$ and $p_{k}=\frac{1}{k} \operatorname{Tr} T_{I J}$

A-averaging

NEC

$$
T_{M N} n^{M} n^{N} \geq 0 \text { for every null } n^{M}
$$

A-averaging

NEC

$$
T_{M N} n^{M} n^{N} \geq 0 \text { for every null } n^{M}
$$

A-averaged NEC

$$
\left\langle T_{M N} n^{M} n^{N}\right\rangle_{A} \equiv
$$

$$
\left(\int T_{M N} n^{M} n^{N} \sqrt{e^{A \Omega}} e^{2 \Omega} \sqrt{g} d^{k} y\right) /\left(e^{A \Omega} e^{2 \Omega} \sqrt{g} d^{k} y\right) \geq 0
$$

A-averaging

NEC

$$
T_{M N} n^{M} n^{N} \geq 0 \text { for every null } n^{M}
$$

A-averaged NEC

$$
\left\langle T_{M N} n^{M} n^{N}\right\rangle_{A}=
$$

$$
\left(\int T_{M N} n^{M} n^{N} \sqrt{e^{A \Omega}} e^{2 \Omega} \sqrt{g} d^{k} y\right) /\left(e^{A \Omega} e^{2 \Omega} \sqrt{g} d^{k} y\right) \geq 0
$$

N.B. If A-averaged NEC violated then NEC also violated (but not the converse)
consider k space - time dep. extra dimensions :

$$
\begin{gathered}
\gamma_{a b}(t, y)=e^{-2 \Omega} g_{a b} \\
\frac{d}{d t} \gamma_{a b}=\frac{2}{k} \xi \gamma_{a b}+\sigma_{a b}
\end{gathered}
$$

take clever linear combinations of G_{00} and $G_{i j}$:

$$
\begin{aligned}
e^{-\phi}\left\langle e^{2 \Omega}\left(\rho+p_{3}\right)\right\rangle_{A}= & \left(\rho_{4 d}+p_{4 d}\right)-\frac{k+2}{2 k}\langle\xi\rangle_{A}^{2}-\frac{k+2}{2 k}\left\langle\left(\xi-\langle\xi\rangle_{A}\right)^{2}\right\rangle_{A}-\left\langle\sigma^{2}\right\rangle_{A} \\
e^{-\phi}\left\langle e^{2 \Omega}\left(\rho+p_{k}\right)\right\rangle_{A}= & \frac{1}{2}\left(\rho_{4 d}+3 p_{4 d}\right)+2\left(\frac{A}{4}-1\right) \frac{k+2}{2 k}\left\langle\left(\xi-\langle\xi\rangle_{A}\right)^{2}\right\rangle_{A} \\
& -\frac{k+2}{2 k}\langle\xi\rangle_{A}^{2}-\left\langle\sigma^{2}\right\rangle_{A} \\
& +\left[-5+\frac{10}{k}+k+A\left(-3+\frac{6}{k}\right)\right]\left\langle e^{2 \Omega}(\partial \Omega)^{2}\right\rangle_{A} \\
& +\frac{k+2}{2 k} \frac{1}{a^{3}} \frac{d}{d t}\left(a^{3}\langle\xi\rangle_{A}\right)
\end{aligned}
$$

consider k space - time dep. extra dimensions :

$$
\begin{gathered}
\gamma_{a b}(t, y)=e^{-2 \Omega} g_{a b} \\
\frac{d}{d t} \gamma_{a b}=\frac{2}{k} \xi \gamma_{a b}+\sigma_{a b}
\end{gathered}
$$

take clever linear combinations of G_{00} and $G_{i j}$:

$$
\left\langle e^{2 \Omega}\left(\rho+p_{3}\right)\right\rangle_{A} \propto\left(\rho^{4 d}+p^{4 d}\right)-\frac{k+2}{2 k}\left(\langle\xi\rangle_{A}\right)^{2}+\text { non-positive for all A }
$$

$$
\left\langle e^{2 \Omega}\left(\rho+p_{k}\right)\right\rangle_{A} \propto \frac{1}{2}\left(\rho^{4 d}+3 p^{4 d}\right)+\frac{k+2}{2 k} \frac{1}{a^{3}} \frac{d}{d t}\left(a^{3}\langle\xi\rangle_{A}\right)+\begin{gathered}
\text { non-positive } \\
\text { for some } \mathrm{A}
\end{gathered}
$$

consider k space - time dep. extra dimensions :

$$
\begin{gathered}
\gamma_{a b}(t, y)=e^{-2 \Omega} g_{a b} \\
\frac{d}{d t} \gamma_{a b}=\frac{2}{k} \xi \gamma_{a b}+\sigma_{a b}
\end{gathered}
$$

take clever linear combinations of G_{00} and $G_{i j}$:

$$
\begin{array}{cc}
\left\langle e^{2 \Omega}\left(\rho+p_{3}\right)\right\rangle_{A} \propto\left(\rho^{4 d}+p^{4 d}\right)-\frac{k+2}{2 k}\left\langle(\xi\rangle_{A}\right)^{2} & + \text { non-positive for all A } \\
1+w_{\text {total }} \geq 0 & \leq 0
\end{array} \quad \leq 0 \quad \begin{gathered}
\\
\left\langle e^{2 \Omega}\left(\rho+p_{k}\right)\right\rangle_{A} \propto \frac{1}{2}\left(\rho^{4 d}+3 p^{4 d}\right)+\frac{k+2}{2 k} \frac{1}{a^{3}} \frac{d}{d t}\left(a^{3}\langle\xi\rangle_{A}\right)+\begin{array}{c}
\text { non-positive } \\
\text { for some A }
\end{array} \\
1+3 w_{\text {total }}<0
\end{gathered}
$$

consider k space - time dep. extra dimensions :

$$
\begin{gathered}
\gamma_{a b}(t, y)=e^{-2 \Omega} g_{a b} \\
\frac{d}{d t} \gamma_{a b}=\frac{2}{k} \xi \gamma_{a b}+\sigma_{a b}
\end{gathered}
$$

take clever linear combinations of G_{00} and $G_{i j}$:

$$
\begin{aligned}
& \left\langle e^{2 \Omega}\left(\rho+p_{3}\right)\right\rangle_{A} \propto\left(\rho^{4 d}+p^{4 d}\right)-\frac{k+2}{2 k}\left(\langle\xi\rangle_{A}\right)^{2}+\text { non-positive for all A } \\
& 1+w_{\text {total }} \geq 0 \leq 0 \leq 0 \\
& \left\langle e^{2 \Omega}\left(\rho+p_{k}\right)\right\rangle_{A} \propto \frac{1}{2}\left(\rho^{4 d}+3 p^{4 d}\right)+\frac{k+2}{2 k} \frac{1}{a^{3}} \frac{d}{d t}\left(a^{3}\langle\xi\rangle_{A}\right)+\begin{array}{c}
\text { non-positive } \\
\text { for some } A
\end{array} \\
& 1+3 w_{\text {total }}<0 \text { only hope } \\
& \text { is if this is nonzero } \\
& \leq 0
\end{aligned}
$$

Illustrative example: pure cosmological constant $\left(\mathrm{w}_{\text {total }}=-1\right)$

$\begin{array}{ccc}\left\langle e^{2 \Omega}\left(\rho+p_{3}\right)\right\rangle_{A} \propto\left(\rho^{4 d}+p^{4 d}\right)-\frac{k+2}{2 k}\left(\langle\xi\rangle_{A}\right)^{2} & + & \text { non-positive for all } \mathrm{A} \\ 1+W_{\text {total }} \geq 0 & \leq 0 & \leq 0\end{array}$
$\left\langle e^{2 \Omega}\left(\rho+p_{k}\right)\right\rangle_{A} \propto \frac{1}{2}\left(\rho^{4 d}+3 p^{4 d}\right)+\frac{k+2}{2 k} \frac{1}{a^{3}} \frac{d}{d t}\left(a^{3}\langle\xi\rangle_{A}\right)+\begin{gathered}\text { non-positive } \\ \text { for some } A\end{gathered}$

Illustrative example: pure cosmological constant ($\mathrm{w}_{\text {total }}=-1$)

$\begin{array}{ccc}\left\langle e^{2 \Omega}\left(\rho+p_{3}\right)\right\rangle_{A} \propto\left(\rho^{4 d}+p^{4 d}\right)-\frac{k+2}{2 k}\left(\langle\xi\rangle_{A}\right)^{2} & + & \text { non-positive for all } \mathrm{A} \\ 1+w_{\text {tolu t }} \geq 0 & \leq 0 & \leq 0\end{array}$

$$
=0
$$

$\left\langle e^{2 \Omega}\left(\rho+p_{k}\right)\right\rangle_{A} \propto \frac{1}{2}\left(\rho^{4 d}+3 p^{4 d}\right)+\frac{k+2}{2 k} \frac{1}{a^{3}} \frac{d}{d t}\left(a^{3}\langle\xi\rangle_{A}\right)+\underset{\substack{\text { non-positive } \\ \text { for some } A}}{\substack{\text { som }}}$ only hope ≤ 0

Illustrative example: pure cosmological constant $\left(\mathrm{w}_{\text {total }}=-1\right)$

$\begin{array}{cc}\left\langle e^{2 \Omega}\left(\rho+p_{3}\right)\right\rangle_{A} \propto\left(\rho^{4 d}+p^{4 d}\right)-\frac{k+2}{2 k}\left(\left\langle\xi \xi_{A}\right)^{2}\right. \\ 1+w_{\text {tolu }}: \geq 0 & \leq 0\end{array}$

$$
=0
$$

$\left\langle e^{2 \Omega}\left(\rho+p_{k}\right)\right\rangle_{A} \propto \frac{1}{2}\left(\rho^{4 d}+3 p^{4 d}\right)+\frac{k+2}{2 k} \frac{1}{a^{3}} \frac{d}{d t}\left(a^{3}\langle\xi\rangle_{A}\right)+\begin{gathered}\text { non-positive } \\ \text { for some } A\end{gathered}$

$$
1+3 w_{\text {total }}=-2 \text { only hope } \leq 0
$$

Illustrative example: pure cosmological constant $\left(\mathrm{w}_{\text {total }}=-1\right)$

$\begin{array}{ccc}\left\langle e^{2 \Omega}\left(\rho+p_{3}\right)\right\rangle_{A} \propto\left(\rho^{4 d}+p^{4 d}\right)-\frac{k+2}{2 k}\left(\langle\xi\rangle_{A}\right)^{2} & + & \text { non-positive for all } \mathrm{A} \\ 1+w_{\text {tolu: }} \geq 0 & \leq 0 & \leq 0\end{array}$

$$
=0 \quad \text { Trouble! }
$$

$\left\langle e^{2 \Omega}\left(\rho+p_{k}\right)\right\rangle_{A} \propto \frac{1}{2}\left(\rho^{4 d}+3 p^{4 d}\right)+\frac{k+2}{2 k} \frac{1}{a^{3}} \frac{d}{d t}\left(a^{3}\langle\xi\rangle_{A}\right)+\begin{gathered}\text { non-positive } \\ \text { for some } A\end{gathered}$

$$
1+3 w_{\text {total }}=-2 \text { only hope } \leq 0
$$

Illustrative example: pure cosmological constant $\left(\mathrm{w}_{\text {total }}=-1\right)$

$$
\begin{array}{ccc}
\left\langle e^{2 \Omega}\left(\rho+p_{3}\right)\right\rangle_{A} \propto\left(\rho^{4 d}+p^{4 d}\right)-\frac{k+2}{2 k}\left(\langle\xi\rangle_{A}\right)^{2}+ & \text { non-positive for all A } \\
1+\text { wow }^{2} \geq 0 & \leq 0 & \leq 0 \\
=0 & \text { Trouble! } &
\end{array}
$$

$$
\begin{array}{rc}
\left\langle e^{2 \Omega}\left(\rho+p_{k}\right)\right\rangle_{A} \propto \frac{1}{2}\left(\rho^{4 d}+3 p^{4 d}\right)+\frac{k+2}{2 k} \frac{1}{a^{3}} \frac{d}{d t}\left(a^{3}\langle\xi\rangle_{A}\right)+\begin{array}{c}
\text { non-positive } \\
\text { for some } \mathrm{A}
\end{array} \\
1+3 w_{\text {total }}=-2 & \text { only hope }
\end{array}
$$

therefore, must have $w_{\text {total }}>-1$

Curious corollary:

Not only rules out pure Λ universe,
but also Λ CDM

What about w > -1?

Can have $w<-1 / 3$ if G_{N} is time varying...

$$
\text { but if } w_{\text {transient }}>w>-1
$$

can only maintain for only a brief period;

Models that satisfy constraints on $\mathrm{G}_{\mathrm{N}}(\mathrm{t})$ and NEC

Curious corollary:

Dark energy is barely compatible w/o NEC violation . . .

Curious corollary:

Dark energy is barely compatible w/o NEC violation . . .
and inflation w/o NEC violation is absolutely impossible!

So, let's trade:
No G_{N} variation . . . but allow NEC violation

Now there are new constraints . . .

$\left.\left\langle e^{2 \Omega}\left(\rho+p_{3}\right)\right\rangle_{A} \propto\left(\rho^{4 d}+p^{4 d}\right)-\frac{k+2}{2 k} /\langle\xi\rangle_{A}\right)^{2}+$ non-positive for all A
$\left\langle e^{2 \Omega}\left(\rho+p_{k}\right)\right\rangle_{A} \propto \frac{1}{2}\left(\rho^{4 d}+3 p^{4 d}\right)+\frac{k+2}{2 k} \frac{1}{a^{3}} \frac{d}{d t}\left(a^{3}\langle\xi\rangle_{A}\right)+\begin{gathered}\text { non-positive } \\ \text { for some } \mathrm{A}\end{gathered}$
measure of
choose $A=A^{*}$ so that last term is zero

NEC violation

Now there are new constraints . . .

$\left.\left\langle e^{2 \Omega}\left(\rho+p_{3}\right)\right\rangle_{A} \propto\left(\rho^{4 d}+p^{4 d}\right)-\frac{k+2}{2 k}(\xi \xi\rangle_{A}\right)^{2}+$ non-positive for all A
$\left\langle e^{2 \Omega}\left(\rho+p_{k}\right)\right\rangle_{A} \propto \frac{1}{2}\left(\rho^{4 d}+3 p^{4 d}\right)+\frac{k+2}{2 k} \frac{1}{a^{3}} \frac{d}{d t}\left(a^{3}\langle\xi\rangle_{A}\right)+\begin{gathered}\text { non-positive } \\ \text { for some } A\end{gathered}$

$$
\sim 1+3 w
$$

measure of
choose $A=A$ * so that last term is zero

NEC violation

Now there are new constraints . . .

$\left\langle e^{2 \Omega}\left(\rho+p_{3}\right)\right\rangle_{A} \propto\left(\rho^{4 d}+p^{4 d}\right)-\frac{k+2}{2 k}\left\langle(\xi\rangle_{A}\right)^{2}+$ neg. semi-def. for all A
$\left\langle e^{2 \Omega}\left(\rho+p_{k}\right)\right\rangle_{A} \propto \frac{1}{2}\left(\rho^{4 d}+3 p^{4 d}\right)+\frac{k+2}{2 k} \frac{1}{a^{3}} \frac{d}{d t} /\left(a^{3}\langle\xi\rangle_{A}\right)+\underset{\text { neg. semi-def. }}{\text { fome } A}$

$$
\sim 1+3 w
$$

choose $A=A^{*}$ so that last term is zero
measure of
NEC violation
NEC violation must be time-dependent and proportional to $\rho_{4 d}$

Inflation problematic

$$
\begin{gathered}
\left\langle e^{2 \Omega}\left(\rho+p_{3}\right)\right\rangle_{A} \propto\left(\rho^{4 d}+p^{4 d}\right)-\frac{k+2}{2 k}\left\langle\langle\xi\rangle_{A}\right)^{2}+\text { neg. semi-def. } \\
\left\langle e^{2 \Omega}\left(\rho+p_{k}\right)\right\rangle_{A} \propto \frac{1}{2}\left(\rho^{4 d}+3 p^{4 d}\right)+\frac{k+2}{2 k} \frac{1}{a^{3}} \frac{d}{d t}\left(a^{3}\langle\xi\rangle_{A}\right)+\begin{array}{c}
\text { neg. semi-def. } \\
\text { for range of } \mathrm{A}
\end{array} \\
\begin{array}{c}
\text { volation of NEC } \\
10^{100} \times \text { DE }
\end{array} \\
\begin{array}{c}
\text { source of NEC } \\
\text { different from DE }
\end{array} \& \quad \begin{array}{c}
\text { must be able } \\
\text { to annihilate it }
\end{array}
\end{gathered}
$$

Comment on models that violate the metric or GR conditions

$$
\begin{aligned}
& \left\langle e^{2 \Omega}\left(\rho+p_{3}\right)\right\rangle_{A} \propto\left(\rho^{4 d}+p^{4 d}\right)-\frac{k+2}{2 k}\left(\langle\xi\rangle_{A}\right)^{2}+\text { non-positive for all A } \\
& \left\langle e^{2 \Omega}\left(\rho+p_{k}\right)\right\rangle_{A} \propto \frac{1}{2}\left(\rho^{4 d}+3 p^{4 d}\right)+\frac{k+2}{2 k} \frac{1}{a^{3}} \frac{d}{d t}\left(a^{3}\langle\xi\rangle_{A}\right)+\begin{array}{c}
\text { non-positive } \\
\text { for some } A
\end{array}
\end{aligned}
$$

No-go Theorem Summary

If four assumptions \& NEC obeyed:
Inflation impossible
DE barely possible,
... but only if G and w vary with time
... can be ruled out with near further data

If four assumptions \& fixed moduli /NEC violated:
NEC must be violation in compact dimensions
... must be inhomogeneous in compact dimensions
... must vary with time in sync with w4d
... violation must be substantial for inflation

Inflation, Dark Energy

\&

Extra Dimonsions
w/Daniel Wesley (Cambridge)

