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Messages:

• Rates of neutrino processes important for stellar collapse calculations

• Improved estimates of rates. Include mean-field effects and collisions

• Preliminary results. Rates of processes involving energy transfer reduced
by up to one order of magnitude



Supernova 1987A, Hubble Space Telscope



General considerations and history

• Neutrinos seen from SN 1987A

• Early calculations. Energy transport by neutrinos.
Colgate and White (1966)

• 1970s. Discovery of weak neutral currents (ν + N → ν + N), in addition
to charged currents (p + e− → n + νe).

• Improved equations of state.

• Failure of direct explosion mechanism.

• Shock revival by neutrino heating (Bethe, Wilson).

• Still no agreed mechanism for generating explosion.
(Convection, sound waves, rotation, magnetic fields)

• Need improved estimates of neutrino processes



Neutrino processes

Free nucleons

• Scattering from nucleons N + ν → N + ν

Effects of N-N interactions

• Scattering modified. Initial and final state interactions
N + N + ν → N + N + ν

• Bremsstrahlung of neutrino pairs N + N → N + N + ν + ν̄

• Pair annihilation ν + ν̄ + N + N → N + N

• Similar processes in neutron star cooling (also charged currents)

Complication. Inhomogeneity of matter (coherent scattering)



Interactions have two effects

• Mean-field effects

– Screening of matrix elements
– Phase space altered only quantitatively

• Real collisions

– Allows extra processes
– Landau-Pomeranchuk-Migdal effect



Previous calculations

• Mean-field effects

– Iwamoto (1982) (Kagawa U.)
– Burrows, Sawyer; Reddy, Lattimer, Prakash, Pons (1998-9)

• Real collisions

– Allows extra processes
– Landau–Pomeranchuk–Migdal effect
– Raffelt, Seckel, Sigl, Hannestad (1995-8). Zero q

Challenge: To include both effects



Basic formalism

• Treat weak interactions using Golden Rule.

Rates ∝ G2
F

∫
dωd3q . . . S(q, ω)

• S(q, ω) – density-density (vector) or spin-spin (axial vector) dynamical
structure factors (nucleons non-relativistic)

• Related to the corresponding correlation functions:

S(q, ω) =
1

πn

1
1− e−ω/T

Imχ(ω,q)

• Problem is to calculate structure factors for nucleonic matter.

• Crucial densities seem to be somewhat below nuclear matter density.
(High densities – neutrinos trap. Low densities – few interactions)
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Phase Space

• Neutrino scattering. (ω, q) spacelike.

• Neutrino pair production or annihilation. (ω, q) timelike.

• Single nucleon particle-hole pair. |ω| ≤ vFq, i.e. spacelike.

• Need collisions between nucleons for the latter processes.
Two or more particle-hole pair creation.
Both timelike and spacelike.

• Also affects scattering.

• Landau-Pomeranchuk-Migdal effect. (Raffelt and coworkers.)



Interactions

• Vector and axial vector terms.

• Nucleons nonrelativistic.

– Vector current ∝ number density of nucleon.
– Axial current ∝ spin density of nucleon.

• Need spin-density–spin-density and density–density
correlation functions.

• Wavenumbers usually small compared with kF.

• Temperatures ∼ Fermi temperature or less.

• Start with Landau Fermi-liquid theory.

• Central interactions. N. Iwamoto, thesis (1981).



Fermi liquid theory with tensor interactions

• System on nucleons, either pure neutrons or neutron-proton mixture.

• Generally axial vector interaction most important. Factor 3.
Vector important for coherent scattering from nuclei.

• Density response. Particle number conserved.

ωm0(ρq)m0 = −q · (jq)m0, (ρq)m0 = −q · (jq)m0

ωm0

• Spin response. Total spin not conserved. (cf. liquid 3He)

χσ = χLandau + χMultipair, χLandau =
µ2N(0)
1 + F

−µ has tensor components, ∝ σ and σ · p̂ p̂.
− F has tensor components.

• Effects well known to nuclear physicists.



Spin response function

• Relaxation time approximation.

• Only isotropic Landau interaction.

χσ =
X0

1 + g0X0

X0 = N(0)
[
1− ω

2vFq
ln

(
ω + i/τσ + vFq

ω + i/τσ − vFq

)]

• Generalization of usual response function to allow for collisions.

• Includes effects of nonzero q and mean field.

• Long wavelengths, q → 0

χσ =
N(0)

1 + G0 − iωτσ
, Sσ =

N(0)
πn

ω

1− e−ω/T

Γσ

ω2 + [(1 + G0)Γσ]2

Usual relaxation form. Γσ = 1/τσ



Relaxation rates

• Vector

– Vector charge does not decay. CVC
– Amounts to particle conservation nonrelativistically
– Distortions of distribution which are anisotropic in

momentum space can decay.

• Axial

– Axial vector can decay. PCAC
– Tensor force in one component systems
– Central (spin-exchange) interactions in mixtures

Neutrons and protons couple with opposite sign to Z boson



Collision Rates

• Collision rate

1
τ

= C[T 2 + (ω/2π)2]

• Spin relaxation rate

1
τσ

= Cσ[T 2 + (ω/2π)2]

Non-central, especially tensor forces essential!



Scattering rate

Cσ =
π3m∗

6k2
F

〈
1
12

∑

j=1,2,3

Tr
{
Aσ1,σ2(k,k′) σj

1

[
(σ1 + σ2)j , Aσ1,σ2(−k,k′)

] }〉

FS

• Change of spin (more generally weak charge) in collision is important

• A – scattering amplitude times N(0). Many different terms.

• Cσ ∼ 0.05.

• Quasiparticle picture consistent for Γσ ! T , or T ! 20 MeV.
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FIG. 3: (Color online) Ratio of the spin relaxation rate to the relaxation rate for an excess of quasiparticles in a single
momentum state (1/τσ)/(1/τ ) as a function of Fermi momentum kF for purely tensor scattering amplitudes (in which case
the value is 2), for the one-pion exchange interaction (which gives the value 4/3), from low-momentum interactions Vlow k, and
including second-order many-body contributions.
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FIG. 4: The imaginary part of the spin response function Imχσ/N(0) of Eq. (21) in units of the density of states versus ω/(vFq).
Results are shown for the non-interacting system, without and with mean-field effects, G0 = 0 and G0 = 0.8 respectively, and
for different values of the spin relaxation rate 1/τσ = 0, vFqτσ = 2 and vFqτσ = 5.

densities. This is because the central part of the OPE interaction ∼ k2 and ∼ k′2 does not capture the central shorter-
range physics in nuclear forces. This deficiency of the OPE model is most prominent at low densities, in comparison
to the increasing Vlow k rate. Similar to the spin response, we find a reduction of C due to second-order many-body
contributions, where the band in Fig. 2 again indicates a range for the effects due to many-body correlations. Finally,
as expected, the relaxation rate obtained from Vlow k plus second-order contributions is now dominated by the central
terms in Eq. (42).

In Fig. 3 we show the ratio (1/τσ)/(1/τ) of the spin relaxation rate to the relaxation rate for an excess of quasi-
particles in a single momentum state as a function of Fermi momentum kF. This is a very useful measure of the
strength of noncentral interactions compared to central ones. For purely tensor scattering amplitudes, the ratio of
the corresponding spin traces in Eqs. (41) and (42) gives (1/τσ)/(1/τ) = 2, while for the OPE interaction, which

Spin dynamical structure factor



Nucleon–nucleon interactions

• Spin relaxation time depends on subtle aspects of interaction.

• One-pion exchange. ↑ + ↑ → ↓ + ↓

• Potentials fitted to scattering data (Paris, Argonne, ...)

• Vlowk. (Schwenk, Brown, Friman)

– Effective interaction in reduced space.
– Put in medium effects by perturbation theory.

• Chiral perturbation theory. Expansion in powers of momentum.
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FIG. 1: (Color online) The spin relaxation time given by Cσ of Eq. (34) as a function of Fermi momentum kF obtained from
the one-pion exchange interaction (OPE), from low-momentum interactions Vlow k, and including second-order many-body
contributions. In addition, we show that the result obtained from Vlow k plus second-order contributions is dominated by tensor
interactions (dotted versus solid line).
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FIG. 2: (Color online) The relaxation time for decay of an excess of quasiparticles in a particular momentum state given by C
of Eq. (29) as a function of Fermi momentum kF obtained from the one-pion exchange interaction (OPE), from low-momentum
interactions Vlow k, and including second-order many-body contributions. In addition, we show that the result obtained from
Vlow k plus second-order contributions is dominated by central interactions (dotted versus solid line).

of the quasiparticle scattering amplitude). These effects are due to second-order particle-hole interference of tensor
with strong central interactions, which are driven by large scattering lengths at very low densities. The band in Fig. 1
from Vlow k to including second-order contributions provides a range for the effects due to many-body correlations. In
addition, we observe that the spin relaxation rate depends only weakly on density, and the rate obtained from Vlow k

plus second-order contributions is dominated by the tensor terms in Eq. (41).
For the relaxation coefficient C of Eq. (29) corresponding to decay of an excess of quasiparticles in a particular

momentum state, we obtain rates in Fig. 2 that are of similar magnitude compared with the spin relaxation rate.
While the OPE rate is approximately independent of density, the OPE model underestimates the relaxation rate at low

Quasiparticle relaxation rate

1
τ

= C

[
T 2 +

( ω

2π

)2
]

(1)



S(q, \omega)
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of the quasiparticle scattering amplitude). These effects are due to second-order particle-hole interference of tensor
with strong central interactions, which are driven by large scattering lengths at very low densities. The band in Fig. 1
from Vlow k to including second-order contributions provides a range for the effects due to many-body correlations. In
addition, we observe that the spin relaxation rate depends only weakly on density, and the rate obtained from Vlow k

plus second-order contributions is dominated by the tensor terms in Eq. (41).
For the relaxation coefficient C of Eq. (29) corresponding to decay of an excess of quasiparticles in a particular

momentum state, we obtain rates in Fig. 2 that are of similar magnitude compared with the spin relaxation rate.
While the OPE rate is approximately independent of density, the OPE model underestimates the relaxation rate at low

Spin relaxation rate

1
τσ

= Cσ

[
T 2 +

( ω

2π

)2
]

(1)



Neutrino processes

Scattering mean free path

1
l
∝ T

∫ ∞

0

Sσ(ω, q)
ω

∝ m∗

1 + G0

Total scattering rate unaffected by spin relaxation
Energy transfer sensitive
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G0 0 0.8 0 0.8 0 0.8

kF [fm−1] T [MeV] Cσ from OPE Vlow k Vlow k + 2nd order

1.0
5 1.77 1.62 0.911 0.888 0.173 0.172

10 4.02 3.00 2.25 2.06 0.441 0.440

1.7
5 2.75 2.49 1.09 1.07 0.679 0.675

10 6.18 4.55 2.73 2.57 1.72 1.68

TABLE II: Energy-loss rate Q of Eq. (45) due to neutrino-pair bremsstrahlung, nn → nnνν, for characteristic temperatures
and Fermi momenta. Results are given without and with mean-field effects, G0 = 0 and G0 = 0.8 respectively, and for
different spin relaxation rates 1/τσ based on Fig. 1. The energy-loss rates are in units of 1033 erg cm−3 s−1 for T = 5MeV and
1035 erg cm−3 s−1 for T = 10 MeV.

G0 0 0.8 0 0.8 0 0.8

kF [fm−1] T [MeV] Cσ from OPE Vlow k Vlow k + 2nd order

1.0
5

2.48 2.26 1.27 1.24 0.241 0.241 nn ↔ nnνν

3.46 2.81 1.94 1.76 0.401 0.394 νnn ↔ νnn

10
2.81 2.10 1.58 1.44 0.308 0.307 nn ↔ nnνν

3.41 2.24 2.20 1.79 0.502 0.485 νnn ↔ νnn

1.7
5

3.85 3.48 1.53 1.50 0.949 0.943 nn ↔ nnνν

5.33 4.30 2.38 2.20 1.53 1.46 νnn ↔ νnn

10
4.32 3.18 1.91 1.80 1.21 1.18 nn ↔ nnνν

5.21 3.37 2.76 2.35 1.84 1.67 νnn ↔ νnn

TABLE III: Rate of energy transfer ∆Q/∆T due to neutrino-pair bremsstrahlung and absorption, nn ↔ nnνν, of Eq. (46)
and due to inelastic scattering, νnn ↔ νnn, of Eq. (47) for characteristic temperatures and Fermi momenta. Results are given
without and with mean-field effects, G0 = 0 and G0 = 0.8 respectively, and for different spin relaxation rates 1/τσ based on
Fig. 1. The rates are in 1033 erg cm−3 s−1 MeV−1 for T = 5MeV and in 1035 erg cm−3 s−1 MeV−1 for T = 10 MeV.

for characteristic temperatures and Fermi momenta. This result applies for a Maxwellian initial distribution of
neutrinos, and Pauli blocking in the final state has been ignored. We consider structure factors without and with
mean-field effects, G0 = 0 and G0 = 0.8 respectively, and for different spin relaxation rates 1/τσ based on Fig. 1. With
the spin relaxation rates obtained from Vlow k and including second-order many-body contributions, the mean-free
paths are significantly longer compared to the OPE model. This follows the reduction of Cσ seen in Fig. 1. For OPE,
the effects of interactions (G0 = 0.8 compared to G0 = 0) reduce the neutrino scattering rate, especially at higher
temperature. In contrast, with the rates based on low-momentum interactions, ωτσ is larger and the imaginary part
of the spin response function approaches Imχσ(ω, q → 0) → N(0)/(ωτσ). As a result, mean-field effects are weak for
|ω|τσ " 1 in the long-wavelength limit.

The energy-loss rate Q due to neutrino-pair bremsstrahlung, nn → nnνν, of neutron matter transparent to neutrinos
is given by

Q =
C2

AG2
F n

20π3

∞∫

0

dω ω6 e−ω/T Sσ(ω) . (45)

Our results for the energy-loss rate Q are listed in Table II for characteristic temperatures, Fermi momenta and
the different cases of the structure factor. They follow the same general pattern as the inverse mean-free paths in
Table I: a reduction of the energy loss calculated with modern nuclear forces compared to OPE and consequently
weak mean-field effects.

Finally, we consider the rate of energy transfer ∆Q/∆T from neutron matter at temperature T to a neutrino fluid
at temperature Tν, with ∆T = T − Tν and |∆T | $ T . The energy transfer due to neutrino-pair bremsstrahlung and
absorption, nn ↔ nnνν, is given by

∆Q

∆T
=

C2
AG2

F

20π3

n

T 2

∞∫

0

dω ω7 e−ω/T Sσ(ω) , (46)

• Energy loss rate due to neutrino pair bremsstrahlung

Q =
C2

AG2
F

20π3
n

∫ ∞

0
dωω6e−ω/T Sσ(ω)

Rate reduced by a factor of 4-10



• Rate of energy transfer between neutrinos and neutrons due to neutrino
pair bremsstrahlung and annihilation

∆Q

∆T
=

C2
AG2

F

20π3

n

T 2

∫ ∞

0
dωω7e−ω/T Sσ(ω)
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for characteristic temperatures and Fermi momenta. This result applies for a Maxwellian initial distribution of
neutrinos, and Pauli blocking in the final state has been ignored. We consider structure factors without and with
mean-field effects, G0 = 0 and G0 = 0.8 respectively, and for different spin relaxation rates 1/τσ based on Fig. 1. With
the spin relaxation rates obtained from Vlow k and including second-order many-body contributions, the mean-free
paths are significantly longer compared to the OPE model. This follows the reduction of Cσ seen in Fig. 1. For OPE,
the effects of interactions (G0 = 0.8 compared to G0 = 0) reduce the neutrino scattering rate, especially at higher
temperature. In contrast, with the rates based on low-momentum interactions, ωτσ is larger and the imaginary part
of the spin response function approaches Imχσ(ω, q → 0) → N(0)/(ωτσ). As a result, mean-field effects are weak for
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The energy-loss rate Q due to neutrino-pair bremsstrahlung, nn → nnνν, of neutron matter transparent to neutrinos
is given by

Q =
C2

AG2
F n

20π3

∞∫

0

dω ω6 e−ω/T Sσ(ω) . (45)

Our results for the energy-loss rate Q are listed in Table II for characteristic temperatures, Fermi momenta and
the different cases of the structure factor. They follow the same general pattern as the inverse mean-free paths in
Table I: a reduction of the energy loss calculated with modern nuclear forces compared to OPE and consequently
weak mean-field effects.
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∆Q

∆T
=

C2
AG2

F

20π3

n

T 2

∞∫

0

dω ω7 e−ω/T Sσ(ω) , (46)

Rates reduced by factor of up to 10



For the future

• Nonzero q (recoil).

• Mixtures of neutrons and protons.
Central interactions can relax spins.

• Other components (Clusters – α particles, other nuclei).

• Extend to less degenerate regime.

• Prepare tables for numerical codes. Modular codes.

• Sensitivity tests. Where to put calculating effort.

• Better estimates of in-medium effects on scattering.



Dilute neutron matter
– a resonant Fermi gas

• Long scattering length, ann ≈ −18.5 fm in singlet state.

• Effective range significant, re ≈ 2.7 fm.

• Like a narrow Feshbach resonance.
Most resonances in ultracold gases are broad.

A. Schwenk and C. P., Phys. Rev. Lett. 95, 160401 (2005).
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