Neutrino Interactions in Dense Matter 7th RESCEU International Symposium, Tokyo 11-14 November, 2008

C. J. Pethick Nordita and Niels Bohr International Academy

Messages:

- Rates of neutrino processes important for stellar collapse calculations
- Improved estimates of rates. Include mean-field effects and collisions
- Preliminary results. Rates of processes involving energy transfer reduced by up to one order of magnitude

Supernova 1987A, Hubble Space Telscope

General considerations and history

- Neutrinos seen from SN 1987A
- Early calculations. Energy transport by neutrinos. Colgate and White (1966)
- 1970s. Discovery of weak neutral currents $(\nu + N \rightarrow \nu + N)$, in addition to charged currents $(p + e^- \rightarrow n + \nu_e)$.
- Improved equations of state.
- Failure of direct explosion mechanism.
- Shock revival by neutrino heating (Bethe, Wilson).
- Still no agreed mechanism for generating explosion. (Convection, sound waves, rotation, magnetic fields)
- Need improved estimates of neutrino processes

Neutrino processes

Free nucleons

• Scattering from nucleons $N + \nu \rightarrow N + \nu$

Effects of N-N interactions

- Scattering modified. Initial and final state interactions $N + N + \nu \rightarrow N + N + \nu$
- **Bremsstrahlung** of neutrino pairs $N + N \rightarrow N + N + \nu + \bar{\nu}$
- Pair annihilation $\nu + \bar{\nu} + N + N \rightarrow N + N$
- Similar processes in neutron star cooling (also charged currents) Complication. Inhomogeneity of matter (coherent scattering)

Interactions have two effects

- Mean-field effects
 - Screening of matrix elements
 - Phase space altered only quantitatively
- Real collisions
 - Allows extra processes
 - Landau-Pomeranchuk-Migdal effect

Previous calculations

- Mean-field effects
 - Iwamoto (1982) (Kagawa U.)
 - Burrows, Sawyer; Reddy, Lattimer, Prakash, Pons (1998-9)
- Real collisions
 - Allows extra processes
 - Landau–Pomeranchuk–Migdal effect
 - Raffelt, Seckel, Sigl, Hannestad (1995-8). Zero q

Challenge: To include both effects

Basic formalism

• Treat weak interactions using Golden Rule.

Rates
$$\propto G_{\rm F}^2 \int d\omega d^3 q \dots S(q,\omega)$$

- $S(q, \omega)$ density-density (vector) or spin-spin (axial vector) dynamical structure factors (nucleons non-relativistic)
- Related to the corresponding correlation functions:

$$S(q,\omega) = \frac{1}{\pi n} \frac{1}{1 - e^{-\omega/T}} \operatorname{Im} \chi(\omega, \mathbf{q})$$

- Problem is to calculate structure factors for nucleonic matter.
- Crucial densities seem to be somewhat below nuclear matter density. (High densities – neutrinos trap. Low densities – few interactions)

Phase Space

- Neutrino scattering. (ω, \mathbf{q}) spacelike.
- Neutrino pair production or annihilation. (ω, \mathbf{q}) timelike.
- Single nucleon particle-hole pair. $|\omega| \leq v_{\rm F} q$, i.e. spacelike.
- Need collisions between nucleons for the latter processes. Two or more particle-hole pair creation.
 Both timelike and spacelike.
- Also affects scattering.
- Landau-Pomeranchuk-Migdal effect. (Raffelt and coworkers.)

Interactions

- Vector and axial vector terms.
- Nucleons nonrelativistic.
 - Vector current \propto number density of nucleon.
 - Axial current \propto spin density of nucleon.
- Need spin-density–spin-density and density–density correlation functions.
- Wavenumbers usually small compared with $k_{\rm F}$.
- Temperatures ~ Fermi temperature or less.
- Start with Landau Fermi-liquid theory.
- Central interactions. N. Iwamoto, thesis (1981).

Fermi liquid theory with tensor interactions

- System on nucleons, either pure neutrons or neutron-proton mixture.
- Generally axial vector interaction most important. Factor 3. Vector important for coherent scattering from nuclei.
- Density response. Particle number conserved.

$$\omega_{m0}(\rho_{\mathbf{q}})_{m0} = -\mathbf{q} \cdot (\mathbf{j}_{\mathbf{q}})_{m0}, \qquad (\rho_{\mathbf{q}})_{m0} = -\frac{\mathbf{q} \cdot (\mathbf{j}_{\mathbf{q}})_{m0}}{\omega_{m0}}$$

• Spin response. Total spin not conserved. (cf. liquid ${}^{3}\text{He}$)

 $\chi_{\sigma} = \chi_{\text{Landau}} + \chi_{\text{Multipair}}, \quad \chi_{\text{Landau}} = \frac{\mu^2 N(0)}{1+F}$

 $-\mu$ has tensor components, $\propto \boldsymbol{\sigma}$ and $\boldsymbol{\sigma} \cdot \hat{\mathbf{p}} \ \hat{\mathbf{p}}$. - F has tensor components.

• Effects well known to nuclear physicists.

Spin response function

- Relaxation time approximation.
- Only isotropic Landau interaction.

$$\chi_{\sigma} = \frac{X^{0}}{1 + g_{0}X^{0}}$$
$$X^{0} = N(0) \left[1 - \frac{\omega}{2v_{\rm F}q} \ln \left(\frac{\omega + i/\tau_{\sigma} + v_{\rm F}q}{\omega + i/\tau_{\sigma} - v_{\rm F}q} \right) \right]$$

- Generalization of usual response function to allow for collisions.
- Includes effects of nonzero q and mean field.
- Long wavelengths, $q \rightarrow 0$

$$\chi_{\sigma} = \frac{N(0)}{1 + G_0 - i\omega\tau_{\sigma}}, \quad S_{\sigma} = \frac{N(0)}{\pi n} \frac{\omega}{1 - e^{-\omega/T}} \frac{\Gamma_{\sigma}}{\omega^2 + [(1 + G_0)\Gamma_{\sigma}]^2}$$
Usual relaxation form. $\Gamma_{\sigma} = 1/\tau_{\sigma}$

Relaxation rates

• Vector

- Vector charge does not decay. CVC
- Amounts to particle conservation nonrelativistically
- Distortions of distribution which are anisotropic in momentum space can decay.
- Axial
 - Axial vector can decay. PCAC
 - Tensor force in one component systems
 - Central (spin-exchange) interactions in mixtures
 Neutrons and protons couple with opposite sign to Z boson

Collision Rates

• Collision rate

$$\frac{1}{\tau} = C[T^2 + (\omega/2\pi)^2]$$

• Spin relaxation rate

$$\frac{1}{\tau_{\sigma}} = C_{\sigma} [T^2 + (\omega/2\pi)^2]$$

Non-central, especially tensor forces essential!

Scattering rate

$$C_{\sigma} = \frac{\pi^3 m^*}{6k_{\rm F}^2} \left\langle \frac{1}{12} \sum_{j=1,2,3} \operatorname{Tr} \left\{ \mathcal{A}_{\sigma_1,\sigma_2}(\mathbf{k},\mathbf{k}') \, \boldsymbol{\sigma}_1^j \left[(\boldsymbol{\sigma}_1 + \boldsymbol{\sigma}_2)^j \,, \, \mathcal{A}_{\sigma_1,\sigma_2}(-\mathbf{k},\mathbf{k}') \right] \right\} \right\rangle_{\rm FS}$$

- Change of spin (more generally weak charge) in collision is important
- \mathcal{A} scattering amplitude times N(0). Many different terms.
- $C_{\sigma} \sim 0.05$.
- Quasiparticle picture consistent for $\Gamma_{\sigma} \lesssim T$, or $T \lesssim 20$ MeV.

Nucleon–nucleon interactions

- Spin relaxation time depends on subtle aspects of interaction.
- One-pion exchange. $\uparrow + \uparrow \rightarrow \downarrow + \downarrow$
- Potentials fitted to scattering data (Paris, Argonne, ...)
- V_{lowk} . (Schwenk, Brown, Friman)
 - Effective interaction in reduced space.
 - Put in medium effects by perturbation theory.
- Chiral perturbation theory. Expansion in powers of momentum

Neutrino processes
Scattering mean free path

$$\frac{1}{l} \propto T \int_0^\infty \frac{S_{\sigma}(\omega, q)}{\omega} \propto \frac{m^*}{1+G_0}$$

Sotal scattering rate unaffected by spin relaxation
Energy transfer sensitive

• Energy loss rate due to neutrino pair bremsstrahlung

$$Q = \frac{C_{\rm A}^2 G_{\rm F}^2}{20\pi^3} n \int_0^\infty d\omega \omega^6 \mathrm{e}^{-\omega/T} S_\sigma(\omega)$$

Rate reduced by a factor of 4-10

	G_0	0	0.8	0	0.8	0	0.8
$k_{\rm F} [{\rm fm}^{-1}]$	$T \; [{\rm MeV}]$	C_{σ} from OPE		$V_{\mathrm{low}\;k}$		$V_{\log k} + 2$ nd order	
1.0	5	1.77	1.62	0.911	0.888	0.173	0.172
	10	4.02	3.00	2.25	2.06	0.441	0.440
1.7	5	2.75	2.49	1.09	1.07	0.679	0.675
	10	6.18	4.55	2.73	2.57	1.72	1.68

TABLE II: Energy-loss rate Q of Eq. (45) due to neutrino-pair bremsstrahlung, $nn \rightarrow nn\nu\overline{\nu}$, for characteristic temperatures and Fermi momenta. Results are given without and with mean-field effects, $G_0 = 0$ and $G_0 = 0.8$ respectively, and for different spin relaxation rates $1/\tau_{\sigma}$ based on Fig. 1. The energy-loss rates are in units of 10^{33} erg cm⁻³ s⁻¹ for T = 5 MeV and 10^{35} erg cm⁻³ s⁻¹ for T = 10 MeV.

• Rate of energy transfer between neutrinos and neutrons due to neutrino pair bremsstrahlung and annihilation

$$\frac{\Delta Q}{\Delta T} = \frac{C_{\rm A}^2 G_{\rm F}^2}{20\pi^3} \frac{n}{T^2} \int_0^\infty d\omega \omega^7 \mathrm{e}^{-\omega/T} S_\sigma(\omega)$$

	G_0	0	0.8	0	0.8	0	0.8	
$k_{\rm F} \; [{\rm fm}^{-1}]$	$T \; [{\rm MeV}]$	C_{σ} from OPE		$V_{\mathrm{low}k}$		$V_{\log k} + 2$ nd order		
1.0	5	2.48	2.26	1.27	1.24	0.241	0.241	$nn \leftrightarrow nn \nu \overline{ u}$
		3.46	2.81	1.94	1.76	0.401	0.394	$ unn \leftrightarrow \nu nn $
	10	2.81	2.10	1.58	1.44	0.308	0.307	$nn \leftrightarrow nn \nu \overline{\nu}$
		3.41	2.24	2.20	1.79	0.502	0.485	$\nu nn \leftrightarrow \nu nn$
1.7	5	3.85	3.48	1.53	1.50	0.949	0.943	$nn \leftrightarrow nn \nu \overline{ u}$
		5.33	4.30	2.38	2.20	1.53	1.46	$ unn \leftrightarrow \nu nn $
	10	4.32	3.18	1.91	1.80	1.21	1.18	$nn \leftrightarrow nn \nu \overline{\nu}$
		5.21	3.37	2.76	2.35	1.84	1.67	$\nu nn \leftrightarrow \nu nn$

TABLE III: Rate of energy transfer $\Delta Q/\Delta T$ due to neutrino-pair bremsstrahlung and absorption, $nn \leftrightarrow nn\nu\overline{\nu}$, of Eq. (46) and due to inelastic scattering, $\nu nn \leftrightarrow \nu nn$, of Eq. (47) for characteristic temperatures and Fermi momenta. Results are given without and with mean-field effects, $G_0 = 0$ and $G_0 = 0.8$ respectively, and for different spin relaxation rates $1/\tau_{\sigma}$ based or Fig. 1. The rates are in $10^{33} \text{ erg cm}^{-3} \text{ s}^{-1} \text{ MeV}^{-1}$ for T = 5 MeV and in $10^{35} \text{ erg cm}^{-3} \text{ s}^{-1} \text{ MeV}^{-1}$ for T = 10 MeV.

Rates reduced by factor of up to 10

For the future

- Nonzero q (recoil).
- Mixtures of neutrons and protons. Central interactions can relax spins.
- Other components (Clusters α particles, other nuclei).
- Extend to less degenerate regime.
- Prepare tables for numerical codes. Modular codes.
- Sensitivity tests. Where to put calculating effort.
- Better estimates of in-medium effects on scattering.

Dilute neutron matter – a resonant Fermi gas

- Long scattering length, $a_{nn} \approx -18.5$ fm in singlet state.
- Effective range significant, $r_{\rm e} \approx 2.7$ fm.
- Like a *narrow* Feshbach resonance. Most resonances in ultracold gases are broad.
- A. Schwenk and C. P., Phys. Rev. Lett. **95**, 160401 (2005).

Thanks to: Emma Olsson, Pawel Haensel, Gennadi Lykasov, Achim Schwenk, Sonia Bacca, Katy Hally

E. Olsson and C. P., Phys. Rev. C 66, 065803 (2002).

E. Olsson, P. Haensel, and C. P., Phys. Rev. C 70, 025804 (2004).

G. Lykasov, E. Olsson, and C. P., Phys. Rev. C 72, 025802 (2005).

G. Lykasov, C. P., and A. Schwenk, Phys. Rev. C 78, 045803 (2008).

