Cosmology from Topology of Large Scale Structure of the Universe

RESCEU Symposium on Astroparticle Physics and Cosmology
11-14, November 2008
Changbom Park
(Korea Institute for Advanced Study)
Why is the topology study useful?

Direct intuitive meanings

At large linear scales
Gaussianity of the primordial density field
(Gott et al. 1986)

At small non-linear scales
Galaxy distribution at non-linear scales sensitive to cosmological parameters & galaxy formation mechanism
(Park, Kim & Gott 2005)
Measures of topology - Minkowski Functionals

3D
1. 3d genus (Euler characteristic) 2. mean curvature
3. contour surface area 4. volume fraction

→ 3d galaxy redshift survey data

2D
1. 2d genus (Euler characteristic) 2. contour length
3. area fraction

→ CMB temperature/polarization fluctuations, 2d galaxy surveys

1D
1. level crossings 2. length fraction

→ Lyα clouds, deep HI surveys, pencil beam galaxy surveys
The 3D Genus

Definition

\[G = \# \text{ of holes} - \# \text{ of isolated regions} \]

in iso-density contour surfaces

\[= \frac{1}{4\pi} \int_S \kappa \, dA \quad (\text{Gauss-Bonnet Theorem}) \]

[ex. \(G(\text{sphere})=-1, \quad G(\text{torus})=0, \quad G(\text{two tori})=+1 \)]

: 2 holes – 1 body = +1
Gaussian Field

Genus/unit volume \(g(\nu) = A \left(1 - \nu^2\right) \exp(-\nu^2/2) \)

where \(\nu = (\rho - \rho_b)/\rho_b \sigma \) & \(A = 1/(2\pi)^2 <k^2/3>^{3/2} \)

if \(P(k) \sim k^n \), \(A_R G^3 = [8\sqrt{2\pi^2}]^{-1} \ast [(n+3)/3]^{3/2} \)
Non-Gaussian Field (Toy models)

Clusters

Bubbles

(Weinberg, Gott & Melott 1987)
History of LSS Topology Study

I. Early Works

- 1986: Hamilton, Gott, Weinberg; Gott, Melott, Dickinson
 - smooth small-scale NL clustering to recover initial topology
- 1987-8: GWM, WGM, MWG, Gott et al.
 - cosmological & toy models. $R_G > 3r_c$ to recover initial topology
- 1989: Gott et al. – observed galaxies, dwarfs, clusters
- 1991: Park & Gott – NL gravitational evolution & biasing effects
- 1992: Weinberg, Cole – PS, initial skewness, biasing effects
- 1994: Matsubara – 2nd order perturbation in weakly NL regime
- 1996: Matsubara – redshift space distortion in L regime
 - Matsubara & Suto – NL gravitational evolution & z-space distortion
 - Matsubara & Yokoyama - non-Gaussian fields
II. Recent Works

- 2000: Colley et al. – Simulation of SDSS
- 2003: Matsubara – 2nd order perturbation theory
- Minkowski functionals
 Gott et al. (1990) - CMB
 Mecke, Buchert & Wagner (1994); Schmalzing & Buchert (1997)
 Matsubara (2008) - perturbation theory of halo bias & redshift-space distortion

III. 3D genus analysis of observational data

1989: Gott et al. - CfA 1 etc. → consistent with Gaussian
1992: Park, Gott, & da Costa - SSRS 1
1992: Moore et al. - IRAS QDOT
1994: Rhoads et al. - Abell Clusters
1994: Vogeley et al. - CfA 1+2
1997: Protogeros & Weinbergs - IRAS 1.2Jy "
1998: Springel et al. - IRAS 1.2Jy
1998: Canavezes et al. - IRAS PSCz
2002: Hikage et al. - SDSS EDR
2003: Hikage et al. - SDSS LSS Sample 12
2004: Canavezes & Efstathious - 2dFRGS
2005: Park et al. - SDSS LSS Sample 14 → Luminosity bias in topology
Observational sample sizes

100 Mpc/h
Voids (blue - 7% low), filaments/clusters (red - 7% high) in the SDSS DR4plus sample (Gott et al. 2008) => Sponge !!
SDSS DR4plus sample (Gott et al. 2008) : smoothing scale $R_G=6h^{-1}\text{Mpc}$

Test for galaxy formation models
Current status of LSS topology study

1. Large scales (>> 10 h⁻¹Mpc)
 - Primordial Gaussianity → No strong constraints yet due to small sample size
 (But SDSS LRG sample & future deep redshift surveys)

2. Small scales (< 10 h⁻¹Mpc)
 - Little study so far. Needs dense sample.
 - Topology at small scales is sensitive to cosmological parameters & galaxy formation
 (gravitational evolution, galaxy biasing, internal physical properties of galaxies)
Large-scale structure

as a cosmic ruler

Large Scales

constrain the shape of power spectrum $P(k)$ & the expansion history of space $H(t)$

\Rightarrow cosmological parameters like $\Omega_m h$, w, etc.
Observables for cosmological parameter estimation

1. **primordial fluctuations (~initial conditions)**

 CMB (+neutrino, gravitational wave)

 => geometry of space, matter contents, matter $P(k)$, non-Gaussianity

2. **Expansion history of the space**

<table>
<thead>
<tr>
<th>standard candle</th>
<th>$D_L(z) = (1+z) \ r(z)$</th>
<th>SN Ia</th>
<th>HST Legacy, Essence, DES, SNAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>standard ruler</td>
<td>$D_A(z) = (1+z)^{-1} \ r(z)$</td>
<td>$dV/dzd\Omega = r^2(z)/H(z)$</td>
<td>AP test, BAO</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Topology</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>redshift surveys (SDSS)</td>
</tr>
</tbody>
</table>

=> $H(z)$ or $r(z) = \int_0^z \frac{dz'}{H(z')}$
Observables

3. **Growth of structures**

<table>
<thead>
<tr>
<th>ISW</th>
<th>1<30 CMB CC btw CMB & LSS</th>
<th>CMB, LSS</th>
<th>WMAP-Planck * SNAP-LSST-SDSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population density</td>
<td>comoving V * # density \rightarrow dn/dz</td>
<td>clusters (SZ, Xray), galaxies</td>
<td>SDSS, ACT, APEX, DES, SPT</td>
</tr>
<tr>
<td>Weak lensing</td>
<td>shear convergence</td>
<td>imaging, photo-z</td>
<td>CFHTLS, SNAP, DES, LSST</td>
</tr>
</tbody>
</table>

=>$>$ depends on both expansion of space $H(z)$ & matter power spectrum $P(k)$

4. **Properties of non-linear structures**

properties of galaxies, AGNs, cluster of galaxies, globular cluster

=>$>$ depends on $H(z)$, $P(k)$, non-linear physics
LSS as a cosmic ruler

Filament-dominated Cosmic Web

Bond et al. (1996): Final-state web is present in embryonic form in the overdensity pattern of the initial fluctuations with NL dynamics just sharpening the image.
Cosmic Sponge Theory

Not just overdensity patterns but all large-scale structures including voids maintain their initial topology (sponge) till the present

[Initial density field] [Matter density field at z=0]

flat LCDM
$R_{G}=25h^{-1}\text{Mpc}$
The LSS are in the (quasi-)linear regime, & maintain the primordial sponge topology at all redshifts! (= the original idea of using topology for the test for the Gaussianity of the primordial density field by Gott et al. in 1986)

Now, the LSS can be used as a cosmic ruler for cosmological parameter estimation!
The PS of each model universe has a specific scale dependence, and one can use the whole shape of PS, not just tiny wiggles on top of smooth PS, as a cosmic ruler.

The genus amplitude depends on the shape of PS, and importantly to first order, the genus, as an intrinsic topology, is independent of all small non-linearities (gravitational evolution, biasing, redshift-space distortion).

Cosmological parameter estimation from LSS topology analysis

I. Using the shape of PS

Kim, Park & Gott (2008)
Genus amplitude for CDM PS: strong dependence on $\Omega_m h$

If we choose a wrong cosmology,
there is a difference between the predicted & measured genus.

observed z's $\rightarrow r(z)$ for a trial cosmology \rightarrow compare the predicted & measured genus
Effects of NL gravitational evolution, biasing, redshift-space distortion, discreteness, & finite pixel size

Matter in real & redshift spaces

Dark subhalos in real & redshift spaces

<table>
<thead>
<tr>
<th>space / R_G</th>
<th>difference wrt linear g</th>
</tr>
</thead>
<tbody>
<tr>
<td>real 25h^{-1}Mpc</td>
<td>-0.02%</td>
</tr>
<tr>
<td>redshift 25</td>
<td>-1.7%</td>
</tr>
<tr>
<td>real 35</td>
<td>+0.5%</td>
</tr>
<tr>
<td>redshift 35</td>
<td>-0.8%</td>
</tr>
</tbody>
</table>
Observational Data

Luminous Red Galaxies in SDSS DR4plus

[Image: Scatter plot showing shallow and deep regions with linear regression lines indicating different slopes.]

[Image: Graph showing two distributions with dark subhalos from LCDM.]

[Gott et al. 2008]
LRGs in SDSS DR4plus

\[\Delta g = 7.5\% \quad \text{(DEEP)} \]

\[\Delta g = 4\% \quad \text{(SHALLOW)} \]

\[\text{WMAP3} \]

\[0.271 \]

\[0.240 \]

\[0.203 \]
LRGs in SDSS DR4plus

\[\triangle g = 4\% \text{ (shallow, } R_G = 21 h^{-1}\text{Mpc}) \text{ } & \text{ 7.5\% (deep, } R_G = 34 h^{-1}\text{Mpc}) \]

\[\Omega_m = 0.241 \pm 0.014 \text{ (if flat LCDM & } h=0.72) \]

[Park et al. 2008]
Genus in SDSS LRG galaxies assuming flat LCDM & \(h=0.72 \pm 0.08 \)

[Percival et al. 2007]
BAO in SDSS DR5 Main & LRG galaxies assuming flat LCDM & \(h=0.72 \pm 0.08 \)
Future surveys

Constraint on PS shape using only the genus statistic

1. DR7 of SDSS I+II : # of LRGs \(\sim 100K \)
 \(\triangle g = \sim 3\% \) & \(\triangle \Omega_m = \sim 0.010 \)

2. LRGs in SDSS-III :
 # of LRGs \(\sim 1.5M \)
LRGs in **SDSS-III**: # of LRGs ~ 1.5M

\[\Delta g = \sim 0.8\% \quad \& \quad \Delta \Omega_m \sim 0.004 \]

Genus in SDSS DR4plus LRG galaxies assuming flat LCDM &
\[h = 0.72 \pm 0.08 \]

Genus in SDSS-III LRG galaxies assuming flat LCDM &
\[h = 0.72 \pm 0.08 \]
Cosmological parameter estimation from LSS topology analysis
II. Using the expansion history of the space

Focus on dark energy:

If we choose a wrong equation of state of the dark energy, there are differences between the predicted & measured genus as the redshift changes.

Strategy

- choose a reference cosmology with a certain $w = P/\rho$
- convert z into $r(z)$ through the reference cosmology
- calculate the genus
- compare the measured genus with the predicted genus in the reference cosmology (the w-dependence originated from the different expansion history of space)
Suppose true cosmology is x

- Looking at a larger scale
- + taking a larger volume

\[\text{Measured genus} = \frac{\text{genus of true cosmology at scaled smoothing length}}{\text{volume factor of true cosmology}} \times \frac{\text{volume factor of wrong cosmology}}{1000} \]
Measured genus when a wrong cosmology 'a' is adopted

= genus of true cosmology at scaled R_G
 \times (volume factor of true cosmology / volume factor of wrong cosmology)

= $g(R_G') \times D_V(\text{cosmology } x) / D_V(\text{cosmology } a)$

where $D_V = d_A^2/H(z)$, $R_G' = R_G \times [D_V(x)/D_V(a)]^{1/3}$, &

$$H(z) = H_0 \sqrt{\Omega_m (1+z)^3 + \Omega_X \exp \left[3 \int_0^z \frac{1+w(z)}{1+z} \, dz \right]}$$
Genus & Dark Energy

Suppose we live in a universe with $(\Omega_m, w) = (0.26, -1.0)$.

Let's choose a wrong w when z is converted to $r(z)$.

Difference between the predicted and measured genus as z changes.
Constraint on 'w' using the genus statistic only:

LRGs in SDSS DR4plus

\[\Delta g = 4\% \text{ (shallow, } R_G=21h^{-1}\text{Mpc)} \; \& \; 7.5\% \text{ (deep, } R_G=34h^{-1}\text{Mpc)} \]

\[\rightarrow \Delta w \sim 0.4 \]

Likelihood contours from the BAO scale measurement for flat LCDM models with constant \(w \).

\(D_V(z=0.35)/D_V(0.2) \) is used.

[Percival et al. 2007]
Future surveys

Constraint on 'w' using the genus statistic only:

LRGs in SDSS-III : # of LRGs ~ 1.5M

$\triangle g = \sim 1.5\%$ in each of 3 z-bins $\rightarrow \triangle w \sim 0.08$

[Kim et al. 2008]
Summary

1. Topology of LSS has been used to examine the Gaussianity of galaxy distribution at large scales. This was used to test for the Gaussianity of the primordial density field, which is one of the major predictions of the simple inflationary scenarios.

2. Recently, topology of galaxy distribution at non-linear scales is being used to constrain the galaxy formation mechanisms and cosmological parameters.

3. Here we propose to use the sponge topology of LSS to measure the shape of power spectrum $P(k)$ & the expansion history of space

4. 2D and 1D LSS topology studies too!
 - Redshift slices from the deep imaging surveys - 2d topology
 - Line-of-sight level crossings of Ly-a forest clouds, HI gas distribution - 1d topology