Search for Antiparticle in Cosmic Rays with BESS

Akira Yamamoto (KEK) for the BESS Collaboration

RESCEU symposium, held at U. Tokyo, Nov. 11-14, 2008

BESS Collaboration

High Energy Accelerator Research Organization(KEK)

National Aeronautical and Space Administration Goddard Space Flight Center

Balloon-borne Experiment with a Superconducting Spectrometer

BESS Collaboration

(as of Nov., 2008)

•KEK

M. Hasegawa, A. Horikoshi, Y.Makida, M. Nozaki, R. Orito, J.Suzuki, K.Tanaka, <u>A. Yamamoto*</u>, K.Yoshimura, S. Haino

•NASA/Goddard Space Flight Center

- T. Hams, J.W .Mitchell*, M. Sasaki, R.E. Streitmatter
- •The University of Tokyo
 - J.Nishimura, K. Sakai
- •Kobe University
 - A. Kusumoto
- •Univ. of Maryland K. Kim, M.H. Lee, E.S. Seo
- •ISAS/JAXA
 - H. Fuke, T. Yoshida, T. Yamagami
- •University of Denver
 - J. Ormes, N. Thakur

Cosmic-Ray Antiproton Chronology

- **1979:** First Antiproton Report (Golden et al.)
- **1979:** Russian PM (Bogomolov et al.)
- **1981:** Low-energy excess (Buffington et al.)
- **1985: ASTROMAG** Study Started
- **1986: HEAO Antinucleus upper limits**
- **1987:** LEAP, PBAR (upper limits) BESS proposed (by Orito)
- **1991: MASS**
- **1992:** IMAX (16 mass-resolved antiprotons)
- **1993: BESS (6 mass-resolved antiprotons)**
- **1994: CAPRICE94**
- **1998: CAPRICE98, AMS-01**
- 2000: HEAT-pbar

2004:	BESS-Polar I
2006:	PAMELA
2007:	Solar minimum
	BESS-Polar II
2010+:	AMS-02

Search for Primordial Antiparticles in Cosmic

Primary origins relatively enhanced at < 1 GeV,
 Low energy antiproton is an ideal probe.

BESS Objectives

Balloon-borne Experiment with a Superconducting Spectrometer

Antiparticle/Antimatter

p, D Novel cosmic origins
 Evaporation of Primordial Black Holes
 Annihilation of super-symmetric particles
 He Baryon Asymmetry in Universe
 Fundamental Cosmic-ray Data

Precise spectra

- Propagation, solar modulation, charge-sign dependence, atmospheric secondaries,
- Atmospheric neutrinos

$$p + A \rightarrow \pi + \pi + \cdots$$
$$\pi \rightarrow \mu + v_{\mu}$$
$$\mu \rightarrow e + v_{e} + \psi_{e}$$

BESS Spectrometer: Concept

Rigidity measurement SC Solenoid (L=1m, B=1T) Transparent Min. material (4.7g/cm²) Uniform field Large acceptance **Central tracker** Drift chamber δ~200µm Z, *m* measurement $R,\beta \rightarrow m = ZeR/1/\beta^2-1$ $dE/dx \rightarrow Z$

BESS Ballooning

1993~ 2000, BESS, North Canada 2002, BESS-TeV

1999, 2001, BESS-Ground, Japan

2001, BESS-TeV, Fort Sumner

2004, BESS-Polar I, Antarctica

10 scientific balloon flight

Summary of BESS Observation

	1993	1994	1995	1997	1998	1999	2000	2001	2002	200 4
Program	B			BESS	ESS			BESS-TeV		Bess-P
Data Taking Time (hrs)	14.0	15.0	17.5	18.3	20.0	2.8 +31.3	2.5 +32.5	2.5 +11.0	4.0 +16.0	200
Event Numbers (M Events)	4.0	4.2	4.5	16.2	19.0	2.3 +16.8	2 +15	15	13.0	~900 w/o track trigger
Antiprotons (below 1.1 GeV)	6	2	43	415 (90)	384	668	558	NA	TBD	1520 (246)
Antiproton Ident. Ra nge (GeV)	0.18 [,]	~0.5	0.18 ~15	0.18 ~3.6		0.18~4.2		0.18	~4.2	0.1-4.2
He/He	2.2×10 ⁻⁵	4.3×10 ⁻⁶	2.4×10 ⁻⁶	1.4×10 ⁻⁶	8.8×10 ⁻⁷	6.7×1	0 ⁻⁷	-	-	2.7x10 ⁻⁷

Conventional one-day flight : Bess-Polar I flight for 8 days : Acceptance: 10 ~ 20 M events w/ on-line event selection
900 M events w/o on-line event selection
0.3 --> 0.1 m2sr (due to TOF-PMT problem)

Antiproton Spectrum measured in last Solar Minimum Period in 1995 - 1997

S. Orito et al. PRL, Vol. 84, No, 6, 2000

BESS-Polar Experiment

Very precise measurement Low energy Antiprotons

Around south-pole, Antarctica Long duration flight High latitude

With a new spectrometer Large Acceptance Ultimately small material

BESS-Polar Spectrometer with Minimizing Material in Detectors

Minimize material in spectrometer New detector (Middle TOF)

Energy range extended down to 0.1 GeV

Low power electronics Solar Power System, Longer life of cryogen, LHe

Long duration flight

BESS-Polar: Superconducting Magnet

BESS-Polar | Spectrometer

		BESS	BES	S-Polar	
Geom. Acceptance:		0.3		0.3	
111-•51					
Material for	trigger:	18 g/cm²	4.5 g	/cm²	
Magnetic f	ield	1.0 T	0.8 T		
Weight		2.2	2.0 to	ons	
Power panel	Source	Bat	tery	Solar-	
Power Co	nsumption	1.2 kW	450 \	N	
Cryogen life		5.5	10~	iû ∼ <mark>20 days</mark>	

BESS-Polar | Flight

•Duration: 8 days, 17 hours (December 13-22 2004)

•Altitude: 120 - 129 kft (37 - 39 km)

•Trajectory: circumpolar 77.9° - 86°

•Events recorded: $> 9 \ge 10^8$

•Data volume: ~ 2 terabytes

Protons

- Proton spectra measured to ~500 GeV
- Proton spectra to 100 GeV measured for full solar cycle
- Upper solid line shows local interstellar (LIS) proton spectrum from best fit to BESS data
- Lower curves show the variation with time (Solar modulation) of the measured proton spectra extrapolated to the top of the atmosphere

Antiprotons

- BESS (95+97) Solar-min data show a possible *flattening of the antiproton spectrum at lower energies* compared to secondary production.
- BESS-Polar I data taken at higher solar are consistent with secondary production, as expected.
- Primary source suppressed at higher modulation levels.
- Results to be published in Physics Letters B arXiv:0805.1754

Charge-Sign Dependence of Solar Modulation with p-bar/p Ratio

Filt angle (degree)

Ratio×10⁵

Antiproton/Prote

80⊢

60

П

1996

– Tilt angle

Modulation

BESS-Polar (A<0) BESS (A<0) BESS (A>0)

-- Moskalenko et al. — Bieber et al.

1998

2000

2002

parameter

Bieber et al. PRL, 88, 4, 8 (1999) 674.

Moskalenko et al., APJ, 565 (2002) 280.

1400 (AW) 1200 U00 1000 Woqulation (MA) 500 W

E_b= 0.3 GeV

E_k= 1.0 GeV

E_k= 1.9 GeV

2004

2006 Year

Antihelium

- No antihelium candidate has been found by any investigation
- **BESS-TeV**
 - 1 500 GV, 7 x 10⁴ He events
- BESS-Polar I
 0.6 20 GV, 10⁶ He events
- BESS combined upper limit for the Antihelium to Helium flux ratio
 2.7 x 10⁻⁷
- 24.5-day flight of BESS-Polar II will give sensitivity <3 x 10⁻⁸.
- Science News article May 12, 2007

Antideuteron

- Secondary D probability is negligible at low energies due to kinematics
- Any observed D almost certainly has a primary origin !
- D upper limit (first reported), 1.92 x 10⁻⁴ (m² s sr GeV/n)⁻¹

BESS-Polar II

- Longer Observing Time
 - Increased magnet cryogen life*
 - Enlarged data storage volume*
- Improved Reliability
 - Pressurized enclosure for the TOF PMT
 - Improved electronics efficiency
- Improved Performance
 - ACC rejection power *
- * Specially supported by RESEL 2130 kg
- Middle TOF resolution/position determination
- Outer TOF resolution

- Payload Size:
 - Spectrometer

 1.5 x 1.5
 x 5 m³

 Solar-cell arra

 6 x 8 x
 2.5 m³

 yload weight 2130 kg

Superconducting Magnet

Coil: 0.9 m dia. x 1.4 m long

Very uniform magnetic field

Field Strength 0.8 Tesla (flight)

2.2 g/cm² wall thickness including cryostat

In flight 25 days persistent mode with 520 l LHe

Drift Chamber

Jet-type Drift Chamber Up to 52 track positions With a spatial resolution < 130 um $\Delta R/R = R/MDR$ MDR=240 GV/c

Outer Time-of-Flight

Outer Time of Flight Counter 10 paddle upper plane 12 paddle lower plane active area each 0.95 x 0.1 m² Trigger aperture 0.3 m₂ sr Outer TOF resolution <120 ps

Aerogel Cherenkov Counter

BESS Cherenkov is a light diffusion Cherenkov Counter.

48 R6504 PMT view ACC

Index-of-refraction n=1.03 $β_{ck}$ = 0.971; γ = 4.174 $E_{kin, ck}$ = 0.333 GeV (μ), 2.9 GeV (p)

It is used a Threshold counter binary test: is particle faster β_{ck} allows to suppress lighter e/μ

Light Yield Npe = 12

Rejection factor ~1/6000

Middle Time-of-Flight

- Middle TOF is part of low energy trigger.
- Needs less stringent time resolution
- Can serve a backsplash veto
- 48 Scintillator strips read from both ends by R6504 multi-apode PMT

BESS-Polar II Improvements

Subject	(BESS-Polar I)	(BESS-Polar II)
Magnet Cryogen Life	~ 11 days (400 I LHe)	>25 days (520 I LHe)
Track detector (JET) gas quality	~ 10 days	> 20 days
TOF-PMT housing	Resin potting	Pressurized housing*
ACC particle Identification	Rejection: 1/600	<< 1/1000*
Solar-power system	4 stage 900 W	3 stage 675 W
Effective Acceptance	~0.11m ² sr	0.3 m ² sr
Observation time	8.5 days	> 20 days
Statistics Data storage	4 x BESS97 3.6 TB (2.1 recorded)	20 x BESS97 16 TB (13.5 recorded)*

BESS-Polar II - 2007

BESS-Polar II Launch - December 22, 2007

BESS-Polar II Launch - December 22, 2007

<u>Drift Chamber</u> <u>Performance</u>

Magnet life 22.5 days in ground -> ~ 25.5 days in flight 24.5 days science run with B-field was achieved!

BESS-Polar II Flight

Positive Events

- Launch 12/22/07 17:30 UTC
- Science Termination 1/16/08 2:00 UTC
- Observation time 24 days 10 hours
- Average altitude ~36 km (118,000 ft)
- Latitude 77.9° 83° South

Solar Conditions

- Flight at true Solar minimum
- Sunspot resulted in high-speed stream in solar wind
- Variation in rate clearly correlates with solar wind and neutron monitor
- Daily variation of proton spectrum and antiproton/proton ratio important for further study

End of BESS-Polar II Flight

- Flight termination January 20, 2008 ~30 days
- •Location 83 ° 51.23' S, 73° 5.47' W
- •On West Antarctic ice sheet 225 nm from Patriot Hills Camp, 185 nm from AGO-2, 357 nm from South Pole
- Data successfully recovered February 3!

BESS-Polar II Recovery Plan

- Planned for Winter 2008-2009
- Staging from South Pole baselined
- Camp on site ~1-2 weeks for disassembly
- Bassler (mod DC-3 turboprop) planned due to range and instrument size

Performance Summary

Flight Status	BESS-Polar I	BESS-Polar II
Total Float time	8.5 days	29.5 days
Observation Time	8.5 days	24.5 days
Recorded Event	900M	4700M
Recorded Data size	2.1TB	13.5TB
Trigger rate	1.4kHz	2.4kHz
Live time Fraction	0.8	0.77
Altitude	37~39 km	34~38km
Air Pressure	4~5 g/cm ²	4.5~8 g/cm ²
Total Weight	1950kg	2200kg
Balloon	40-Light	37-Heavy

Detector performance		BESS-Polar I	BESS-Polar II
JET	r-f resolution(mm)	126	128
	z resolution(mm)	45	25
TOF	Timing resolution U-L(ps)	156	118
ACC	N.pe.	6.7	11.3
MTOF	Timing resolution U-M(ps)	320-530	260-360

ID-plot (BESS-Polar II)

ID-plot (BESS-Polar II)

BESS Polar II Observations/Expectations

- Event rate ~2.5 kHz; Total events ~4.7 x 10⁹
- Total data volume 13.5 TB (3.07 kB/event)
- Expected antiprotons ~10,000 10-20 times previous Solar minimum dataset

BESS-Polar Sensitivity

	Acceptance (m ² sr)	Flight Time	Latitude	Altitude (km)	Launch
AMS	0.5	3 years	< 51.7	280~500	2010+
PAMELA	0.0021	3 years	<70.4	350-600	2006
BESS-Polar II	0.3	24.5 days	> 75	36	2007

- BESS experiment carried out since 1993, proposed by late Professor Orito (in 1987) and supported by RESCUE.
 - BESS. Canada/US: 9 successful flights and observations
 - BESS-Polar, Antarctica: 2 successful flights and observations
- BESS-Polar I high-statistics antiproton and proton spectra and increased sensitivity in search for antihelium
- BESS-Polar II successful with observation during the period of solar minimum, in Dec., 2007 through Jan., 2008
 - BESS-Polar II performed well and analysis is underway
 - 24.5 days of BESS-Polar II data increase the statistics on low-energy antiprotons at Solar minimum ~10 (95+97) - 20 (97) fold
- Definitive results expected for PBH search with antiprotons
 Many thanks for the strong support and encouragement by RESCEU