RIKEN-RESCEU Joint Seminar, March 19th-20th

Effects of nucleon recoils for neutrino spectra in core-collapse supernovae

Yamada lab. D3 Chinami Kato

Collaborate with H. Nagakura(Princeton), Y. Hori(Waseda), S. Yamada(Waseda)

Historical SN neutrino events

*** SN1987A**• 23th, Feb, 1987
• LMC
• 20 M_☉
• ~ 50kpc

✓ 11 events @ Kamiokande II ⇒ $L_{\nu} \sim 5 \times 10^{52}$ [ergs] $E_{\nu} \sim 10 - 15$ [MeV] ✓ Neutrinos became a new tool !

Findings by ν obs.

- ✓ mechanism✓ nucleosynthesis✓ EOS
- ✓ BH formation
- \checkmark Physics of ν

SN mechanism

Iron core

 \mathcal{V}

 $\varrho > 5 \times 10^{14} \text{ g/cm}^3$ $T > 10^{12} \text{ K}$

 $\varrho > 10^{12} \, {\rm g}/$

 \mathcal{V}

Core collapse

 $\mathcal V$

Shock wave is stagnant

shock

PNS

PNS formation

PNS cooling

NS

Importance of neutrino

✓ <u>electron neutrinos</u> ⇒ Heating behind a shock wave $v_e + n \rightarrow p + e^ \bar{v}_e + p \rightarrow n + e^+$

n

p

PNS

Stalled shock

n

 \mathcal{D}

✓ <u>heavy-lepton neutrinos</u>

⇒ Efficiency of PNS cooling neutrino oscillation

We must predict neutrino spectra in all flavor !!

Current problems in SN neutrino \checkmark Neutrino reaction \leftarrow My talk Some approximations are used because of CPU cost Ex.) nucleon recoils / weak magnetism / medium modification etc Neutrino oscillation There is possibility that neutrino oscillation occurs inside PNS \Rightarrow neutrino spectra at shock wave change ? Distinction of heavy-lepton flavor Heavy-lepton flavors (v_x) are not distinguished \Rightarrow Recent study shows the importance of distinction Ex.) μ creation @ PNS / weak magnetism / oscillation etc

Difficulty of nucleon recoil It is very difficult to treat nucleon recoils numerically Some studies assume iso-energy scattering Probability Discretized energy bin

 E_{ν}

Eout

Ein

Ein

Flat

nitia

Number

 ① Estimation of energy flux
 ⇒ sub-grid not-fixed grid (depending on Ein)

② "Flatness" procedure
⇒ overestimation of energy exchange ?

Purpose

In order to get realistic neutrino spectrum,

We investigate the effects of nucleon recoils for neutrino spectra

Which reaction is the most dominant in each flavor ?
 Nucleon scattering VS Electron scattering
 How do we take nucleon recoils into numerical simulations ?

Iso-energy scattering & Nucleon recoils

✓ If we take a limit $m_N \to \infty$, $\nu - N$ scattering becomes iso-energy (Bruenn 1985)

✓ Effects of nucleon recoils

- reduction of opacity
- broadening of spectrum
- change of angle distribution

Neutrino transport with MC method

Idea of MC method

Following tracks of "sample particles" with random numbers
Taking average of their behavior

<u>Advantage</u>

Investigation of physical process

Complex background

Reaction ? Boundary of BG ? Update of *f* ?

For neutrinos Reaction rate includes Fermi blocking $(1 - f_v)$ \Rightarrow update of f_v

 ✓ Our code is consistent with discretized method

✓ guarantee the detailed balance

Set up

1D dynamical SN simulation (Nagakura et al. / full Boltzmann solver)

Steady-state ν transport calculation with MC code

<u>BG model</u> 11.2 Msolar without rotation 100ms after post bounce

reactions model				0
pair brems ecp pc	$e^{-} + e^{+} \longrightarrow \nu + \bar{\nu}$ $N + N \longrightarrow N + N + \nu + \bar{\nu}$ $p + e^{-} \longleftrightarrow n + \nu_{e}$ $n + e^{+} \longleftrightarrow p + \bar{\nu}_{e}$	base, r1, e1 base, r1, e1 base, r1, e1 base, r1, e1	E	emis
Nsc(1so) Nsc(rec) esc	$N + \nu \longrightarrow N + \nu$ $e^- + \nu \longrightarrow e^- + \nu$	base r1, e1 e1	S	scatt

ering

How to construct neutrino spectra

After neutrino becomes steady-state, we take the time average of neutrino distribution function

Average energy

 $v_e \& \overline{v_e}$: almost no change v_x : Average energy decreases about 15%

Neutrino spectra

Contribution by each reaction

Number of reaction /s/cm^3

Exchange energy MeV/s/cm^3

Nucleon scattering VS Electron scattering

More energy is exchanged in electron scattering

Number of reaction is larger in nucleon scattering

 $m_e \sim 0.511 \text{MeV}$

1)

Nucleon scattering VS Electron scattering

Exchange energy MeV/s/cm^3

recoil > esc

How to incorporate?

Now we get correct neutrino spectra ⇒ We have to take nucleon recoils into dynamical sim. <u>SET UP</u>

Initial : correct spectra We prepare two fit models for spectra and remake it using fitting at every time step

1) flat

2 Number & energy conservation

Summary

✓ For the next supernova event, we have to prepare realistic neutrino spectra theoretically

✓ We investigate nucleon recoils, which are problematic in numerical simulations

★ Spectrum of heavy-lepton neutrinos are changed by nucleon recoils mainly

★ Nucleon scattering dominates electron scattering in thermalization

★ The fitting using number & energy conservation is favorable for incorporation of nucleon recoils

Thank you for listening !