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Findings by v obs.

v 11 events @ Kamiokande |
v, mechanism

= L,~5 x 10°% [ergs] v/ nucleosynthesis
E,~10 — 15 [MeV] v/ EOS

v BH formation

v Physics of v

v Neutrinos became a new tool !




Preparation for next SN = 'S Slkxern.

Galactic SN rate : a few / 100-1000 years
= We never miss a next galactic SN !

v’ multi-messenger
neutrino / GW / EM

low background technique

More realistic
theoretical prediction of neutrino

nuclear
boson recou
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Impor%aﬁce of neutrino

v electron neutrinos
= Heating behind a shock wave
vz -+ n DNEENe
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v heavy-lepton neutrinos

= Efficiency of PNS cooling
neutrino oscillation

: : Stalled shock
We must predict neutrino \a(i SHOE

spectra in all flavor !l



Current problems in SN neutrino

v’ Neutrino reaction & My talk
Some approximations are used because of CPU cost

Ex.) nucleon recoils / weak magnetism / medium modification etc

v’ Neutrino oscillation

There is possibility that neutrino oscillation occurs

inside PNS
= neutrino spectra at shock wave change ?

v/ Distinction of heavy-lepton flavor

Heavy-lepton flavors (v, ) are not distinguished
= Recent study shows the importance of distinction

Ex.) 1 creation @ PNS / weak magnetism / oscillation etc



Importance of nucleon scattering

v Very small energy exchange
G 23oMey v Number of nucleons is large
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Exchange energy : ~2-3 MeV
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Difficulty of nucleon recoil

It is very difficult to treat nucleon recoils numerically

Some studies assume iso-energy scattering
Probability

Discretized energy bin

@ Estimation of energy flux

3 N Eout = sub-grid
\\ not-fixed grid
(depending on Ein)
- =8 BEE g, \\
| E

Ein

= —

in B

 “Flatness” procedure

= overestimation of energy
exchange ?

Flat
Initial

:EV




Purpose

In order to get realistic neutrino spectrum,

We investigate the effects of nucleon recoils
for neutrino spectra

v Which reaction is the most dominant in each flavor ?
v Nucleon scattering VS Electron scattering

v How do we take nucleon recoils into numerical
simulations ?



Iso-energy scattering & Nucleon recoils
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v/ If we take a limit my — oo,
v — N scattering becomes
ISO-energy  (Bruenn 1985)

v Effects of nucleon recoils
* reduction of opacity

* broadening of spectrum
* change of angle distribution




Neufrlno transport with I\/IC m

Sample
particle

&thod

NEW
CODE !!

For neutrinos

Reaction rate includes Fermi
blocking (1 — f,)

= update of f,

ldea of MC method

- Following tracks of “sample

particles” with random numbers
- Taking average of their behavior

v’ Our code is consistent
with discretized method

Advantage v guarantee the detailed

- Investigation of physical process balance
- Complex background




Set up

1D dynamical SN simulation
(Nagakura et al. / full Boltzmann solver)
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Steady-state v transport
calculation with MC code

BG model

11.2 Msolar without rotation
100ms after post bounce

pair e +eT — U+ base, rl,

DI'CINS — J 7 | base, 1l,
brems | N+ N N+ N +v—+rv | base, rl,
pH+eT ——n-+r, base, 11,

2x10% 4x10% 6x10° 8x10® 107
r[cm]

n+et ——p+u, base, rl,




How to construct neutrino spectra

17000 ——
average

Constant neutrino flux

20 40 60 80 100 120 140
E, [MeV]

sample : 2 x 10°
dt = 1077
average steps : about 10000 steps

10000 20000 30000

time step

After neutrino becomes steady-state, we take the time
average of neutrino distribution function



Average energy
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Vo& V, : almost no change
V, : Average energy decreases about 15%



Neutrino spectra




Contribution by each reaction
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Nucleon scattering VS Electron scattering

m,~939MeV V m,~0.511MeV| | |/
v—N-— vV—e "
N e
More energy is exchanged in Number of reaction is larger
electron scattering in nucleon scattering

Nucleon

T~15MeV
Ev = 25MeV
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Nucleon scattering VS Electron scattering
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How to incorporate?

Now we get correct neutrino spectra
= We have to take nucleon recoils into dynamical sim.

SET UP
Initial : correct spectra
We prepare two fit models for spectra and remake it using

fitting at every time step
@ flat 2 Number & energy conservation
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initial

N&E
conserve

initial

25 30 35 40 10 15 20 25 30 35 40

initial —— initial

&flat

5 10 15 20 25 30 35 40 10 15 20 25 30 35
E, [MeV] E, [MeV]




Summ&a’ry

v/ For the next supernova event, we have to pr
realistic neutrino spectra theoretically

v’ We investigate nucleon recoils, which are problematic

in numerical simulations
% Spectrum of heavy-lepton neutrinos are changed by nucleon

recoils mainly
% Nucleon scattering dominates electron scattering in

thermalization
% The fitting using number & energy conservation is favorable

for incorporation of nucleon recoils
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