

 $\overline{R}_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = 8\pi G1$

RESCE

A bright supernova SN 2012au hosting a pulsar Toshikazu Shigeyama, Miyu Masuyama, and Naoto

Kuriyama (RESCEU)

SN 2012au

- Type Ib SN in NGC 4790 (Howerton+ 2012)
 - Distance~23 Mpc
- Light curve and spectra (Takaki+ 2013, Milisavljevic+ 2013)
 - Lpeak~6x10⁴² erg/s
 - $\bullet \, M_{56Ni} \thicksim 0.3 \ M \textcircled{\circ}$
 - \bullet Mej ~ 4 M \odot
 - Minit~20 Mo
 - Eej~10⁵² erg

Evolution of the spectra

 Spectra in the photospheric phase

RESCEU

- He lines and no hydrogen lines=>SN lb
- Broad lines=>High energy
- Spectrum in the nebula phase (day 274 d)
 - emission lines from singly ionized or neutral atoms

Spectrum 6 yrs later (Milisavljevic+ 2018)

Nower of the pulsar (Nilisavljevic+ 2018)

- Motion of a thin shell in ejecta pushed by energy injection from the central source (Chevalier and Fransson 1992)
 - ejecta
 - homologous expansion
 - inner region has a uniform density
 - Emission lines originate from the thin shell
 - the power from the pulsar~10⁴⁰ erg/s

research enter for the Early Universe Constraints on Magnetic

field

 If the energy is injected by the magnetic dipole radiation, where the spin period P> 1ms.

RESCEU

 $\dot{E} = \frac{8\pi^4 B^2 \sin^2 \alpha R^6}{3c^3 P^4}$

- Bsin α should be greater than 3.2x10¹⁰ G
- The initial spin period P₀ is related to the current spin period by Magnetic braking model.
- P₀>1 ms requires Bsin α <
 3.3x10¹⁴ G

Problems

- High kinetic energy (10⁵² erg) and low velocity (2,300 km/s) emission region
 - The mean velocity of the ejecta~16,000 km/s
 - Is it possible that the inner edge of the ejecta expands slower than 2,300 km/s?
 - Chevalier & Fransson model assumes the existence of slowly expanding ejecta (homologously expanding uniform ejecta)
 - The explosion should produce ~0.3 Mo $^{56}\mathrm{Ni}$

Explosion model Masuyama 2019

- Initial model=He core (6 M
)
- Explosion energy=10⁵² erg
 - Changes the energy input rate or the duration *dt* of the energy input

Energy input

Density distribution

Velocity depending on the energy input rates

- Higher rates can reproduce slower ejecta near the inner edge
- If the energy is still supplied when the reverse shock reaches the inner edge, then the matter there can be further accelerated.
- Quick explosion is preferred.
 - Matter of 10⁻³ M
 has slow velocities.
 - Magnetic braking requires Bsin α >10¹⁶ G=>inconsistent

Velocity distribution

Luminosity of [OIII] line

- Observed luminosity of [OIII] line ~10³⁸ erg/s
 - Line ratios of different ionization stages=>T~6,300K
 - From the mass and the expansion velocity=>N~10² / cm^3 , $\Delta V \sim 3x10^{50} cm^3$

•
$$L(\lambda = 500.7 \text{ nm}) \ 8.63 \times 10^{-10} N_{\rm e} N_{\rm i} T^{-1/2} \frac{\Omega(1,2)}{\omega_1} \exp\left(-\frac{h\nu_{21}}{kT}\right) \times \Delta V \sim 10^{41} \, {\rm erg/s}$$

56Ni production

- Estimate Ni mass from the maximum temperature $T_{\rm max}$ attained in each cell
- Assume matter with T_{max} >5x10⁹ K becomes Ni (Thielemann+ 1986)
 - Quick explosion can produce more than 0.2 M
 Ni

Summary

- SN 2012au
 - energetic and quick explosion of a stripped envelope star
 - E~10⁵² erg, M_{Ni}~0.3 M_☉, M_{init}~20 M_☉
 - Pulsar ionizes O and S in the inner ejecta
 - $3x10^{10} \text{ G} < Bsin \alpha < 3x10^{14} \text{ G}$
 - Pulsar might be kicked

Other topics in Nuclear astrophysics group in RESCEU

- Dynamical mass ejection from massive stars a few years prior to supernovae: Kuriyama
- Fallback Accretion onto Neutron star: Iwata, Kashiyama
- Ejection of free neutrons from binary neutron star merger: Ishii
- SN IIn Light curve: Takei, Tsuna, Kashiyama
- Supernovae in close binary systems: Suda