Linear Analysis of Shock Instability in Core-collapse Supernovae: Effects of fluctuations from inside

Ken'ichi Sugiura (Waseda Univ.) Collaborators: Kazuya Takahashi (Kyoto Univ.) Yamada Shoichi (Waseda Univ.)

arXiv: 1903.00480

CCSNe scenario

- Core-collapse of massive star
- →Core bounce + Formation of shock wave (SW)
- → Propagation of SW

Propagation of SW once stagnate.

 Neutrino heating mechanism: Heating of accreting matter by emitted neutrinos from PNS

CCSNe scenario

- Core-collapse of massive star
- →Core bounce + Formation of shock wave (SW)
- → Propagation of SW

Propagation of SW once stagnate.

 Neutrino heating mechanism: Heating of accreting matter by emitted neutrinos from PNS

CCSNe scenario

- Core-collapse of massive star
- →Core bounce + Formation of shock wave (SW)
- → Propagation of SW

Propagation of SW once stagnate.

 Neutrino heating mechanism: Heating of accreting matter by emitted neutrinos from PNS

CCSNe scenario

- Core-collapse of massive star
- →Core bounce + Formation of shock wave (SW)
- → Propagation of SW

Propagation of SW once stagnate.

 Neutrino heating mechanism: Heating of accreting matter by emitted neutrinos from PNS

CCSNe scenario

- Core-collapse of massive star
- →Core bounce + Formation of shock wave (SW)
- → Propagation of SW

Propagation of SW once stagnate.

 Neutrino heating mechanism: Heating of accreting matter by emitted neutrinos from PNS

Deformation of SW: Standing Accretion Shock Instability (SASI)

Iwakami et al. (2014)

- Instability of the spherically symmetric standing SW
- Induction of dipolar, quadrupolar deformation of the SW
- Turbulence montion are generated below the SW and turbulent pressure supports SW

Deformation of SW: LEpton-number Self-sustained Asymmetry (LESA)

Tamborra et al. (2014)

Deformation of SW accompanied by the dipolar deformation of the lepton-number flux distribution

 \mathbf{V} The deformation sustained for long time (~ a few hundreds ms).

 $\mathbf{V}\langle\epsilon_{\nu_e}\rangle < \langle\epsilon_{\bar{\nu}_e}\rangle \Rightarrow$ Stronger neutrino heating occur in one hemisphere.

Deformation of SW: LEpton-number Self-sustained Asymmetry (LESA)

Deformation of the SW is related to ...?

Other multi-dimensional effects

O Acoustic injection from PNS O Turbulence in pre-shock matter

20

Sorting of multi-dimensional effects

Sorting of multi-dimensional effects

Sorting of multi-dimensional effects

Dynamics of SW deformation

 SASI: Instability of SW
 Eigenmodes of deformation and its instabilities

☑ LESA:

Sustaining of SW deformation Steady solution of perturbation equation

Extrinsic factor of SW deformation

- Turbulence in pre-shock layer
 Outer boundary condition Takahashi et al. (2016)
- Acoustic injection from PNS
 Fluctuations of neutrino radiation

Inner boundary condition

Linear analysis of SW deformation

Time-dependent boundary conditions

Purpose of this study

Linear analysis of spherically symmetric steady accretion flow with standing shock

Model 1: Analysis of SASI

Investigation of influences of inner boundary conditions to the instability of standing shock

Model	Acoustic injection	Fluctuations of neutrino luminosity
Α	no	no
В	yes	no
С	yes	yes

Model 2: Steady solution of perturbation equation

Are there any structures that SW deformation is sustained by fluctuation of the neutrino luminosity?

$$\delta r_{\rm sh} \leftrightarrow F_{\nu_e} + F_{\bar{\nu}_e}$$
 or $\delta r_{\rm sh} \leftrightarrow F_{\nu_e}^n - F_{\bar{\nu}_e}^n$?

Basic equations	_inear perturbation	Linearized equation (Initial-boundary value problem)	Laplace transform	Linearized equation (Boundary value problem)
<u>Scalar</u> <u>variables</u>	$X(\boldsymbol{r},t) = X_0(r) + \epsilon$	$\delta X({m r},t)$		
SW deform.	$r_{ m sh}(heta,\phi,t)=r_{ m sh}$ -	$+ \delta r_{\rm sh}(\theta, \phi, t)$		
Fluctuations of L_v	$T_{\nu}(\theta,\phi,t) = T_{\nu} +$	$-\delta T_{ u}(heta,\phi,t)$		
$rac{ extsf{Velocity}}{oldsymbol{v}(oldsymbol{r},t)} =$	$v_{r0} \boldsymbol{e}_r + \delta \boldsymbol{v}(\boldsymbol{r},t)$			

Basic equations	Linear perturbation around background	Linearized eque (Initial-boundary val problem)	ation lue	Laplace transform	Linearized equation (Boundary value problem)
CONSIGNATION ADDRESS OF					
<u>Scalar</u> <u>variables</u>	$X(\boldsymbol{r},t) = X_0(r) +$	$\delta X(\boldsymbol{r},t)$	$\delta X(\mathbf{r})$	$(\cdot,t) = \sum_{l \in \mathcal{M}} \delta Z$	$X^{(l,m)}(r,t)Y_{lm}(\theta,\phi)$
SW deform.	$r_{\rm sh}(\theta,\phi,t) = r_{\rm sh}$	$+\delta r_{\rm sh}(\theta,\phi,t)$	$\delta r_{ m sh}($	$[\theta,\phi,t) \stackrel{\iota,m}{=} \sum_{t}$	$\int \delta r_{\rm sh}^{(l,m)}(t) Y_{lm}(\theta,\phi)$
Fluctuations of L_{ν}	$T_{\nu}(\theta,\phi,t) = T_{\nu} - $	$+\delta T_{\nu}(\theta,\phi,t)$	$\delta T_{\nu}($	$(\theta, \phi, t) = \sum_{l=1}^{l,m}$	$\delta \delta T_{\nu}^{(l,m)}(t) Y_{lm}(\theta,\phi)$
		(ι,m	
Velocity				Spherical harr	nonics expansion —
$\overline{\boldsymbol{v}(\boldsymbol{r},t)} =$	$v_{r0}\boldsymbol{e}_r + \delta \boldsymbol{v}(\boldsymbol{r},t)$				
Vector sp	herical harmonics exp	ansion ———	Γοτ	· .	<u> </u>
$\delta \boldsymbol{v}(\boldsymbol{r},t) =$	$\sum_{l,m} \delta v_r^{(l,m)}(r,t) Y_{lm}(\theta,$	$\phi)\hat{\boldsymbol{r}} + \delta v_{\perp}^{(l,m)}(\boldsymbol{r},t)$	$\hat{\theta} \left[\hat{\theta} \frac{\partial Y}{\partial \theta} \right]$	$\frac{\partial h}{\partial \theta} + \frac{\phi}{\sin \theta} \frac{\partial Y}{\partial \theta}$	$\left[\frac{lm}{\phi}\right]$
	$+ \delta v_{rot}^{(l,m)}(r,t) \left[-\right]$	$\hat{\phi} \frac{\partial Y_{lm}}{\partial \theta} + \frac{\hat{\theta}}{\sin \theta} \frac{\partial Y_{lm}}{\partial \theta}$	$\left[\frac{lm}{d\phi}\right]$		

Basic equations	Linear perturbation around background	Linearized equation (Initial-boundary value problem)	on Laplace transform	Linearized equation (Boundary value problem)
Contraction and an and an and an and an and an and an				
<u>Scalar</u> variables	$X(\boldsymbol{r},t) = X_0(r) +$	$\delta X(\boldsymbol{r},t)$ δZ	$K(\boldsymbol{r},t) = \sum_{l=1}^{\infty} \delta_{\boldsymbol{r}}$	$X^{(l,m)}(r,t)Y_{lm}(\theta,\phi)$
SW deform.	$r_{\rm sh}(\theta,\phi,t) = r_{\rm sh}$	$+ \delta r_{\rm sh}(\theta, \phi, t) \ \delta r$	$r_{\rm sh}(\theta,\phi,t) \stackrel{l,m}{=} \sum_{k}$	$\sum \delta r_{ m sh}^{(l,m)}(t) Y_{lm}(heta,\phi)$
Fluctuations of L_v	$T_{\nu}(\theta,\phi,t) = T_{\nu} - $	$+ \delta T_{\nu}(\theta, \phi, t) \delta T_{\nu}(\theta, \phi, t)$	$\Gamma_{\nu}(\theta,\phi,t) = \sum_{l=1}^{l,n}$	$\int_{\nu}^{n} \delta T_{\nu}^{(l,m)}(t) Y_{lm}(\theta,\phi)$
			l,n	
<u>Velocity</u>			- Spherical har	monics expansion —
v(r,t) =	$v_{r0}\boldsymbol{e}_r + \delta \boldsymbol{v}(\boldsymbol{r},t)$			
Vector sp	pherical harmonics exp	ansion		
$\delta \boldsymbol{v}(\boldsymbol{r},t) =$	$= \sum_{l,m} \delta v_r^{(l,m)}(r,t) Y_{lm}(\theta,$	$\phi)\hat{\boldsymbol{r}} + \delta v_{\perp}^{(l,m)}(\boldsymbol{r},t) \left[\boldsymbol{\theta} \right]$	$\hat{\theta} \frac{\partial Y_{lm}}{\partial \theta} + \frac{\phi}{\sin \theta} \frac{\partial Y_{lm}}{\partial \theta}$	$\left[\frac{\gamma_{lm}}{\partial \phi}\right]$
	$+ \delta v_{rot}^{(l,m)}(r,t) \left[-\right]$	$\hat{\phi} \frac{\partial Y_{lm}}{\partial \theta} + \frac{\hat{\theta}}{\sin \theta} \frac{\partial Y_{lm}}{\partial \phi}$		

Boundary conditions

Model 1: Analysis of SASI

Outer b.c. ($r = r_{sh}$): Linearized Rankine-Hugoniot cond. $y^*(r_{sh}, s) = (sc + d) \frac{\delta r_{sh}^*}{r_{sh}}(s) + Rz^*(r_{sh}, s)$

Inner b.c. ($r = r_{\nu}$) :

Acoustic injection

$$\frac{\delta p}{v_{r0}c_s\rho_0} + \frac{\delta v_r}{v_{r0}} = \sin\left(\omega_{\text{PNS}}\,t\right)$$

Outgoing acoustic mode

Fluctuations of neutrino temp.

 $\left(\frac{\partial P}{\partial Y_e}\right)_{\rho,T} \delta Y_e(r_{\nu_e},t) + \left(\frac{\partial P}{\partial T}\right)_{\rho,Y_e} \delta T_{\nu}(t) = 0$

Model 2: Steady sol. of perturbed eq.

Outer b.c. ($r = r_{\rm sh}$) : Linearized Rankine-Hugoniot cond.

$$oldsymbol{y}^*(r_{
m sh},s) = (soldsymbol{c}+oldsymbol{d})rac{\delta r_{
m sh}^*}{r_{
m sh}}(s)$$

Inner b.c. ($r=r_{
u}$) :

Fluctuations of neutrino luminosity

$$\frac{\delta L_{\nu_e}}{L_0} = 4 \frac{\delta T_{\nu_e}}{T_{\nu_e 0}} + c_{Y_e} \frac{\delta Y_e}{Y_{e0}}$$
$$\frac{\delta L_{\bar{\nu}_e}}{L_0} = 4 \frac{\delta T_{\bar{\nu}_e}}{T_{\bar{\nu}_e 0}} - c_{Y_e} \frac{\delta Y_e}{Y_{e0}}$$

We consider 2 cases.

 $\begin{cases} c_{Y_e} = 0 & (\Leftrightarrow \delta L_{\nu_e} - \delta L_{\bar{\nu}_e} = 0) \\ c_{Y_e} = 3.5 & (\Leftrightarrow \delta L_{\nu_e} - \delta L_{\bar{\nu}_e} \neq 0) \end{cases}$

Boundary conditions

Boundary conditions

Model 1: Growth rates of SW deformation

Model 1: Growth rates of SW deformation

Model 1: Growth rates of SW deformation

Model 1: Amplitudes of shock deformation

Model 1: Amplitudes of shock deformation

Resonance of acoustic wave and SASI

Resonance of acoustic wave and SASI

Resonance of acoustic wave and SASI

Model 2: Self-Sustained Structure

Model 2: Self-Sustained Structure

Conclusion

Summary

- We have investigated the instability of the standing SW and the accretion flows downstream in the CCSNe by linear analysis.
 - Acoustic injection from the PNS enhances the instability especially when the neutrino luminosity is low.
 - On the other hand, the fluctuations of neutrino luminosity give slight effects on the instability (in linear regime).
 - The sum of flux of electron and anti-electron neutrinos is the key ingredient to the production of the self-sustained steady perturbed configuration.

Future work

- Since the background is spherically symmetric and no magnetic field, this analysis do not include these effects.
- Recently, steady shocked accretion flow with rotation and magnetic field can be calculated, linear analysis around these background is also important for comprehension of CCSNe mechanism.