A Light Curve Model for
Interaction-Powered Supernovae
(in progress)

Daichi Tsuna (RESCEU)
Collaborators: K. Kashiyama, T. Shigeyama (RESCEU)

RIKEN-RESCEU Joint Seminar (March 2019)



SN Fraction
i . — Smith+11
| Ha =
" [ Type I
= W
Ha
* HB | ‘ e
| | (o]
[ Type IIn 11%
% 6%
. 4 (o]
(U ST TR T SN T SN S S S TS — Iln
4000 6000 8000 10000 (9%)
Rest Wavelength A
http://astronomy.swin.edu.au/cosmos/T/Type+lIn+Supernova
=I-P lI-L lIn lb EIb Hic Elbc-pec

~10% of SNe that have 'n’-arrow hydrogen line feature(s) in the spectrum




Huge mass loss (probably) needed

Table 9 1073 — 1M®/yr
Wind Velocities, Mass-loss Rates, and References for SNe IIn in the Literature
Supernova Unshocked Wind Shocked Wind Mass-loss Rate References
Velocity Velocity
(kms™ ) (kms™h (Mg yr 1)
SN 1987F 150 6000 102 [1][2]
SN 19887 <200 12001800 7x 107415 x 1072 [3] [4]
SN 1994W 1000 ~4000 0.3 [5] [6]
SN 1994aj 1000 ~3700 1073 [7]
SN 1995G ~1000 3000-4000 0.1 (8] [9]1[10]
SN 1995N <500 2500-5000 2x 1074 [11][12]
SN 1996L 1600 4800 1073 [13]
SN 1997ab 90 6600 102 [14]
SN 1997eg 160 7000 8.3 x 1077 [15]
SN 1998S 30-100 N/A 1074-1073 [16]-[20]
SN 2005¢l 420 1500 0.03 [21]
SN 2005ip 100-200 1100 22x 1074 [22]
SN 2006gy 200 4000 0.1-1 [23] [24]
SN 2006tf 190 2000 0.1-4.1 [25]
SN 2008iy 100 5000 1-2 x 1072 [26] Kiewe+ 12
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Mechanism for Radiation

CSM
Fast SN ejecta and slow CSM collide
Shock forms, which heats the
ejecta and CSM reglon\Reverse shock
Contact discontinuity Forward shock
Radiation is made in shock-heated - How to model these processes?

region, propagates the CSM, and
reaches the observer

- Are current theoretical models
consistent with observations?




Previous works

* Moriya+ (2013)
Analytical (phenomenological) model of the light curve

Simple model & easy to estimate ejecta & CSM parameters from observation
e Dessart+ (2015)

Non-LTE radiation hydrodynamics calculations

Roughly reproduces observational features of superluminous supernovae

Both did not resolve the structure of the shocked region
» A better model can be obtained by resolving shocked region? (Our work)



Methods: Overview

Calculate hydrodynamics of
ejecta-CSM interaction

Solve radiation transfer
given hydrodynamics

Set Initial Condition
on Temperature

Measure luminosity
at the edge at each
timestep




Methods (0): Parameters

Tested typical(?) parameter sets for Type lIn

Ejecta |
»Mass 10M, energy 10°'erg vt log v
» Density profile: broken power-law of velocity (6 = 1,n = 10)

Matzner & McKee 99

CSM
» Stable wind mass-loss (rate 1><10‘3M@/yr, wind velocity 10 km/s)
»Inner edge: 10**cm, Outer edge: 10'°cm (-> total mass ~ 0.3 M)



Methods (1): Hydrodynamics

e Self-similar solution by Chevalier (1982) i?:
»>Dp, p, V can be obtained as function of time SOE sz |
>Adi-ab.atic solution, so can’t fully inco.rporate ool Density contrast
radiation feedback onto hydrodynamics |o? Factor of O(10) -
(We try, by settingy = 1.2 < 4/3) : :

* Inner shocked ejecta (HIGH density)
+ Outer shocked CSM (LOW density)

: p
* The density contrast depends on the exact 05{[
profile of ejecta & CSM, and adiabatic index o
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Methods (2): Initial Condition 200}

100
.y : 50

Use Chevalier’s solution for pressure,
density, and velocity -
10
5t
Give (radiation) temperature from 2}
pressure by '
1 Osb

pen ==aT* + Pen kgT

3 ‘ump 0.2

u:set to =~ 0.62 assuming
ionized gas of solar abundance




Methods (3): Radiation transfer

Flux-limited radiation transfer

e Optically thick case:
¢ d(aT*)

3Kp or (Opacity k comes from OPAL table
assuming solar abundance)

F =

e Optically thin case:
F = —acT* sign(0T/dr)

* Obtain flux by interpolation of two cases (Levermore & Pomraning 81)

2+ |R|
6 + 3|R| + |R|2 o Ac d(aT*)
e _ _10(rh/or | y F= kp  Or
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Methods (4): Radiation production at shock

Radiation from Shock heating:

»First the gas temperature Increases
T _ .umppCh
7 kgpen

» Then photons are made by free-free emission within diffusion timescale

min(z, 1) r 1
Erqq ~ aTg ~ €57 - (1) X p* ng r - min(t, 1)

(Free-free emissivity)

% Forw shock (low density) should be
much less efficient at photon production
than rev shock (high density)



Gas -> radiation efficiency

(Rad. density that can be supplied by free-free within diff time)

At reverse shock, free-free
emission is strong enough that

radiation & gas reach equilibrium

1 4
Pch = § aTrad

gives temperature T,,4

@forward shock, radiation energy
is limited by free-free emission
within diffusion timescale
min(z,1) r

aTrqq = €5 - .

efficiency

(Rad. density assuming equilibrium eq,q = aT.; d 3pCh)
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Result (Light curve)

[ [
light curve
forw shock — — |
‘rev shock |

Early phase
Photons diffusing out CSM makes a

. : 1x10% [\ T 43 . T o —— o o
sharp rise in the light curve N | | | | | ]
> Peak luminosity ~ 10*3erg/s
» Timescale ~ 10 days

_ _ §1x1042 -
Timescale roughly consistent w/ *
diffusion timescale in CSM
¢ KMcsm
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(Rgy,: radius of shock at peak)



Result (Light curve)

Late phase

Light curve monotonically decays
(With time dependence given by
Energy release rate @ fwd shock &
radiation efficiency @ fwd shock)

-3/8
~3/4

- Energy release rate «< ¢
- Radiation efficiency « t
= [ o« t~9/8

1x1043

n
~
o))

0}

H1x10%?

1x104% |

| | | : ‘ T T T
| | light curve
: forw shock — —
| ‘rev shock -
\ Kinetj % 3 3 1 |
Inetic energy releg: | 3 | 7
‘ energy release rate§ @ forward shock |

—

—_—

T (X Moy

—
! — —_ :
: —_— — - _




Conclusion

* We calculated the light curve of interaction-powered supernovae,
resolving the radial profile inside the shocked region.

* At the early phase we find the luminosity peak that comes from photons
created in the shocked region, diffusing out the CSM.

* At the late phase the luminosity comes from photons generated at the
forward (and reverse) shock front, reflecting the decreasing efficiency at
the forward shock.



Future work

* We have only tested a small number of parameter set, and results should vastly
depend on parameters

» Parameter survey & comparison with observations important

* Our better treatment of the forward shock may have some applications, e.g.
» Calculating non-thermal emission from shock-heated electrons
» Collision-less shock acceleration -> hadronic process (-> high-energy neutrino)

May give multi-wavelength (messenger?) observational predictions of Type lIn SNe



