Core－collapses supernova

explosions in binary systems as a probe into Pop．III stars

Takuma Suda（RESCEU，U－Tokyo）
Collaborators：
Takayuki Saitoh（Kobe U）
Yuuki Moritani（Kavli IPMU，U－Tokyo）
Toshikazu Shigeyama（RESCEU，U－Tokyo）
Kakenhi（C）「連星系での超新星爆発の影響を受けた星の熱進化」 TS，T．R．Saitoh，Y．Moritani，\＆T．Shigeyama，in prep．

History of Search for Pop. III

[Fe / H]

Origin of Extremely Metal-Poor (EMP) Stars

 Carbon-Enhanced Metal-Poor (CEMP) stars ~ $>20 \%$ for $[\mathrm{Fe} / \mathrm{H}]<-2$ with $[\mathrm{C} / \mathrm{Fe}] \geqq 0.7$

See also discussions by Aoki+07, Bonifacio+15, Yoon+16, Matsuno+17, etc.

Proposed Scenarios for the Origins of CEMP Stars

- Origin of EMP stars
- Star formation from the gas influenced by SNe.
- Origin of CEMP stars
- Binary: Mass transfer from AGB stars in binary systems (TS+04)
- CEMP-s stars are thought to belong to binary systems (Lucatello+05).
- Supernova: Star formation from gas affected by peculiar supernovae in the earliest generation of massive stars (Umeda+03, Limongi+04)
- Abundance patterns are well reproduced by mixing and fallback models.
- Rotating stars: Star formation affected by massive fastrotating stars (Meynet+06)
- Abundance patterns are well reproduced by rotational mixing.

Supernova binary scenario

Low-mass Pop III companion Stripping of surface layers is Accretion of SN ejecta
¿Binary separation has to be small enough.
~Evolution to red supergiants (>~ 5 au) will inhibit this scenario (cf. Marigo+01, Heger+10, Kinugawa+14).

Simulations of SN binary scenario

- Stellar evolution models: 1D hydrostatic (Suda+10)
- Supernova explosion models: SN1987A (Shigeyama+90)
- SPH simulations: ASURA code (Saitoh+08)
- Binary system: 20 M + 0.8 M
- Separation : ~0.05 au (10 Ro) or ~0.1 au (~20 Ro)
- Num. of particles: ejecta: ~16M, companion: ~1M
- Previous studies on the stripping by the collisions of supernova ejecta
- la: Marietta+00: PPM
- la: Pakmor+08: GADGET
- la: Pan+12: FLASH
- II: Hirai+14: yamazakura, massive + massive
- lbc: Rimoldi+16: Gadget-2

Evolution of 20 M . Stars

SN ejecta of H15[_2] models

Shigeyama+90 prescription based on Heger+10 models

Configuration with ASURA code

Saitoh+08

- Target: $0.8 \mathrm{M}_{\odot}$ with $\mathrm{R}=0.64 \mathrm{R}$ 。
- Distribution of mass and temperature from Z = 0 models
- $\mathrm{N} \sim 10^{6}$ (sink particle in the center)
- Supernova: Heger \& Woosley (2010) (15,20,25 M ${ }_{\circ}$)
- $\mathrm{N} \sim 7 \times 10^{6}$ (reduced the number of particles for offset collision)

Stripped mass for the H15_2 model

Accretion of ejecta

Mixing of supernova ejecta

Inhomogeneity and asymmetry develop during the explosion.

Preliminary result of

Dependence of accreted mass on separation

Observational Counterparts

- Massive Pop. III stars cannot survive until today.
- Observational counterparts in nearby OB stars
- Radial velocity monitoring
- MALLS on Nayuta telescope (Mid Res.) - 20 nights (16B-18B) +3 nights (19A)
- HIDES on Okayama (High Res.) - 17A: 6 nights
- GAOES on Gunma Obs. (High Res.) - 2016/11/12-2017/2/4: 7 nights
- Target: Massive (+Low-mass) stars
- OB stars from spectroscopic catalog (Skiff, 2009-2016) [64112 stars]
- Exclude double-lined, eclipse, and visual binaries from >20 references [62940]
- Spectroscopic SB1 [62]
- brighter than 8 mag. [24]
- Dec. $>-25^{\circ}$ [14] $\rightarrow 10$ stars
preliminary results for radial velocities

OB star binaries in literature
 (excluding X-ray binaries)

Observational counterparts in solar neighborhood

Orbital periods

Total sample $=1368$

* multiple systems are counted separately.

* Most of them are derived in eclipsing or spectroscopic binaries.

Discussion and Summary

- This study adds another scenario for the origin of known extremely metal-poor (C-enhanced) stars.
- combined scenarios with mixing \& fallback or rotating massive stars?
- Accretion of ejecta is a key diagnosis for Pop. III binaries consisting of massive + low-mass stars.
- Accretion of metals
- Accretion of lithium (produced during SN)
- Binary separation of $\sim 0.1-1$ au is likely to change the surface abundances by stripping or accretion.
- Now computing the case for 0.8 au .
- There should be observational counterparts of massive + low-mass star binaries in solar vicinity.
- true for Pod. Ill case?

