

Core-collapses supernova explosions in binary systems as a probe into Pop. III stars

Takuma Suda (RESCEU, U-Tokyo)

Collaborators:

Takayuki Saitoh (Kobe U)
Yuuki Moritani (Kavli IPMU, U-Tokyo)
Toshikazu Shigeyama (RESCEU, U-Tokyo)

Kakenhi (C)「連星系での超新星爆発の影響を受けた星の熱進化」 TS, T. R. Saitoh, Y. Moritani, & T. Shigeyama, in prep.

History of Search for Pop. III

Origin of Extremely Metal-Poor (EMP) Stars

☆Carbon-Enhanced Metal-Poor (CEMP) stars

 \Rightarrow 20 % for [Fe/H] < -2 with [C/Fe] \geq 0.7

See also discussions by Aoki+07, Bonifacio+15, Yoon+16, Matsuno+17, etc.

Proposed Scenarios for the Origins of CEMP Stars

- Origin of EMP stars
 - Star formation from the gas influenced by SNe.
- Origin of CEMP stars
 - Binary: Mass transfer from AGB stars in binary systems (TS+04)
 - CEMP-s stars are thought to belong to binary systems (Lucatello+05).
 - Supernova: Star formation from gas affected by peculiar supernovae in the earliest generation of massive stars (Umeda+03, Limongi+04)
 - Abundance patterns are well reproduced by mixing and fallback models.
 - Rotating stars: Star formation affected by massive fastrotating stars (Meynet+06)

Abundance patterns are well reproduced by rotational

mixing.

Binary scenario

Rotating star scenario

Meynet+06

Supernova binary scenario

Low-mass Pop III companion

- Stripping of surface layers
- ☆ Accretion of SN ejecta
- ☆ Binary separation has to be small enough.

Heger+10, Kinugawa+14).

Simulations of SN binary scenario

- Stellar evolution models: 1D hydrostatic (Suda+10)
- Supernova explosion models: SN1987A (Shigeyama+90)
- SPH simulations: ASURA code (Saitoh+08)
- Binary system: 20 M_☉ + 0.8 M_☉
- Separation: ~0.05 au (~10 R_☉) or ~0.1 au (~20 R_☉)
- Num. of particles: ejecta: ~16M, companion: ~1M
- Previous studies on the stripping by the collisions of supernova ejecta
 - la: Marietta+00: PPM
 - Ia: Pakmor+08: GADGET
 - Ia: Pan+12: FLASH
 - II: Hirai+14: yamazakura, massive + massive
 - Ibc: Rimoldi+16: Gadget-2

Evolution of 20 M_☉ Stars

SN ejecta of H15[_2] models

Shigeyama+90 prescription based on Heger+10 models

Configuration with ASURA code

Saitoh+08

- Target: 0.8 M_{\odot} with R=0.64 R $_{\odot}$
 - Distribution of mass and temperature from
 Z = 0 models
- N~10⁶ (sink particle in the center)
 - Supernova: Heger & Woosley (2010) $(15,20,25~{\rm M}_{\odot})$
 - N~7x10⁶ (reduced the number of particles for offset collision)

particle mass ratio: 1

log P [10¹⁷ dyn/cm²] -6-5-4-3-2-1 0 1

Simulation Result

 $M_1 = 15M_{\odot}$

主星質量

 $M_2 = 0.8M_{\odot}$

伴星質量

a = 0.1 au

連星間距離

t = 0-20 hours 計算時刻

Density Temperature Pressure

Stripped mass for the H15_2 model

Accretion of ejecta

Inhomogeneity and asymmetry develop during the explosion.

Preliminary result of

Dependence of accreted mass on separation

Observational Counterparts

- Massive Pop. III stars cannot survive until today.
 - Observational counterparts in nearby OB stars
- Radial velocity monitoring
 - MALLS on Nayuta telescope (Mid Res.)
 - 20 nights (16B-18B) + 3 nights (19A)
 - HIDES on Okayama (High Res.)
 - 17A: 6 nights
 - GAOES on Gunma Obs. (High Res.)
 - 2016/11/12-2017/2/4: 7 nights
- Target: Massive (+Low-mass) stars
 - OB stars from spectroscopic catalog (Skiff, 2009-2016) [64112 stars]
 - Exclude double-lined, eclipse, and visual binaries from >20 references [62940]
- Spectroscopic SB1 [62]
- brighter than 8 mag. [24]
- Dec. > -25° [14] -> 10 stars

preliminary results for radial velocities

OB star binaries in literature

5

(excluding X-ray binaries)

Observational counterparts in solar neighborhood

Orbital periods

Total sample = 1368

Mass ratios

* multiple systems are counted separately.

log10(P)[yr]

-3

-2

* Most of them are derived in eclipsing or spectroscopic binaries.

Discussion and Summary

- This study adds another scenario for the origin of known extremely metal-poor (C-enhanced) stars.
 - combined scenarios with mixing & fallback or rotating massive stars?
- Accretion of ejecta is a key diagnosis for Pop. III binaries consisting of massive + low-mass stars.
 - Accretion of metals
 - Accretion of lithium (produced during SN)
- Binary separation of ~0.1 1 au is likely to change the surface abundances by stripping or accretion.
 - · Now computing the case for 0.8 au.
- There should be observational counterparts of massive + low-mass star binaries in solar vicinity.
 - true for Pop. III case?