Thermal electrons in GRB afterglows: causes & effects

Don Warren RIKEN – iTHEMS RIKEN-RESCEU meeting 19 March 2019

Figure 11. Temporal evolution of the post-shock particle spectrum

Outline

- GRBs and afterglows
- "Thermal" electrons: case for, and consequences of
- A semi-analytic model for GRB afterglows

The sky in gamma rays (as seen by Fermi space telescope)

Afterglow is long-lived (hours, days, months) multiwavelength relic of a gamma-ray burst (GRB)

Figure 10. Observations of the atterglow of GRB 130427A spanning from the low-frequency radio to the 100 GeV LAT bands, interpolated to a series of coeval epochs spanning from 0.007 days (10 minutes) to 130 days after the burst. Overplotted over each epoch is our simple forward+reverse shock model from standard synchrotron afterglow theory, which provides an excellent description of the entire data set, a span of 18 orders of magnitude in frequency and 4 orders of magnitude in time. The solid line shows the combined model, with the pale solid line showing the reverse-shock and the pale dotted line showing the forward-shock contribution. The "spur" at $\approx 10^{15}$ Hz shows the effects of host-galaxy extinction on the NIR/optical/UV bands. Open points with error bars are measurements (adjusted to be coeval at each epoch time); pale filled points are model optical fluxes from the empirical fit in Section 3.4. The inset at lower left shows a magnified version of the radio part of the SED (gray box) at t > 0.7 days.

Many different models to explain broadband spectra and light curves

A complete reference of the analytical synchrotron external shock models of gamma-ray bursts

He Gao^a, Wei-Hua Lei^{b,a}, Yuan-Chuan Zou^b, Xue-Feng Wu^c, Bing Zhang^{a,d,e,*}

Many different models to explain broadband spectra and light curves

However, current afterglow studies assume extremely simple model for electrons accelerated by shock

Figure 10. Observations of the atterglow of GRB 130427A spanning from the low-frequency radio to the 100 GeV LAT bands, interpolated to a series of coeval epochs spanning from 0.007 days (10 minutes) to 130 days after the burst. Overplotted over each epoch is our simple forward+reverse shock model from standard synchrotron afterglow theory, which provides an excellent description of the entire data set, a span of 18 orders of magnitude in frequency and 4 orders of magnitude in time. The solid line shows the combined model, with the pale solid line showing the reverse-shock and the pale dotted line showing the forward-shock contribution. The "spur" at $\approx 10^{15}$ Hz shows the effects of host-galaxy extinction on the NIR/optical/UV bands. Open points with error bars are measurements (adjusted to be coeval at each epoch time); pale filled points are model optical fluxes from the empirical fit in Section 3.4. The inset at lower left shows a magnified version of the radio part of the SED (gray box) at t > 0.7 days.

Works *really* well most of time, but sometimes runs into difficulty Frail et al. (2000) (2000ApJ...537..191F)

Furthermore, we find that the electrons and magnetic field are close to equipartition with $\epsilon_e \sim \epsilon_B \sim 0.5$.

TABLE 2
MODEL PARAMETERS

Para	meter	Value	
	Forward	Shock (ISM)	
$\epsilon_{ m e}$		$0.84\substack{+0.06 \\ -0.08}$	
$\epsilon_{ m B}$		$0.11\substack{+0.07 \\ -0.05}$	
	Forward	Shock (wind)	
$\epsilon_{ m e}$		0.60	Laskar et al. (2016)
$\epsilon_{ m B}$		0.40	(2016ApJ83388L)

Works *really* well most of time, but sometimes runs into difficulty

Figure 11. Posterior probability density functions of the physical parameters for GRB 120521C from MCMC simulations. We have restricted $E_{K,iso,52} < 500$, $\epsilon_e < 1/3$, and $\epsilon_B < 1/3$.

All these numbers relied on radio observations.

Why is radio leading to suspicious results? Look at the model:

(Electrons assumed to form power law with index constant in time)

But, with shock acceleration,

- Have "non-nonthermal" particles: crossed shock but didn't enter acceleration process
- Spectral index varies with Lorentz factor (will not be constant in time)

Know this from particle-in-cell (PIC) simulations of relativistic low-magnetization shocks

Critical results:

- Plasma instabilities UpS from shock transfer energy from ions to electrons
- Electrons, ions both cross shock at E ~ γ₀m_pc²
- Only small fraction (few %) enter shock accel process & become cosmic rays

Know this from particle-in-cell (PIC) simulations of relativistic low-magnetization shocks

Critical results:

- Plasma instabilities UpS from shock transfer energy from ions to electrons
- Electrons, ions both cross shock at E ~ γ₀m_pc²
- Only small fraction (few %) enter shock accel process & become cosmic rays

Figure 11. Temporal evolution of the post-shock particle spectrum

Figure 11. Temporal evolution of the post-shock particle spectrum

Use PIC results to guide Monte Carlo simulations of shock accel process in GRB afterglow

Why MC?

- PIC sims ~10⁹ cm across, forward shock >10¹³ cm. Too large space/time domain for computation
- MC approach balances versatility with simplicity: computable on desktop

- Model shock acceleration process at select points in afterglow, then compute photon production Warren et al. (2017)
- Retain all shocked plasma, not just material currently interacting with shock

- Model shock acceleration process at select points in afterglow, then compute photon production Warren et al. (2017)
- Retain all shocked plasma, not just material currently interacting with shock
- Consider 3 cases:
 - NT-only: ignore thermal population
 - TP (test particle): assume inefficient injection to shock accel process
 - NL (nonlinear): assume
 Log10
 efficient injection, & all consequences

(2017ApJ...835..248W)

- Model shock acceleration process at select points in afterglow, then compute photon production Warren et al. (2017)
- Photon processes treated:
 > Synchrotron
 > Inverse Compton
 - CMB
 - Synch. photons
 - ISRF
 - (p-p) π production
 Absorption
 - SSA (at radio)
 - EBL (at GeV+)

• Model shock acceleration process at select points in afterglow, then compute photon production

- In X-ray & optical, all photons are synchrotron
- Just produced by different parts of electron distribution
- Huge (100x) difference in emission when thermal particles included
- Later, all three models similar since non-thermal tails almost identical
- How to distinguish TP and NL?

- How to distinguish TP and NL? Look at spectral index
- Transition from thermal to non-thermal is smoother for NL model than for TP model
- Thermal particles produce hard-soft-hard variation in spectral index
- Height, width affected by efficiency of injection

Warren et al. (2017)

- How to distinguish TP and NL? Look at spectral index
- Transition from thermal to non-thermal is smoother for NL model than for TP model
- Thermal particles produce hard-soft-hard variation in spectral index
- Height, width affected by efficiency of injection

Zhang et al. (2007)

(2007ApJ...666.1002Z)

- How to distinguish TP and NL? Look at spectral index
- Transition from thermal to non-thermal is smoother for NL model than for TP model
- Thermal particles produce hard-soft-hard variation in spectral index
- Height, width affected by efficiency of injection

Zhang et al. (2007)

(2007ApJ...666.1002Z)

• In radio band, thermal particles very important for both emission and absorption

- In radio band, thermal particles very important for both emission and absorption
- For same GRB parameters, huge boost (100x) in radio emission with no change in optical, X-ray
- Fitted GRB parameters will be very different if thermal particles included

- What about high-energy photons (>100 MeV)?
- Electrons can emit by synchrotron self-Compton process, so adding lots of thermal electrons means adding lots of SSC photons
- SSC production scales with n_{elec}², so large gains possible if distribution mostly thermal

Warren et al. (2017)

Medvedev (2006) $\epsilon_e \simeq \lambda \sqrt{\epsilon_B}.$

Note that we made no assumptions h compression has already occurred (we are). We only used the fact that are due to proton currents, which a fields. These electrostatic fields local

Consequently, their momentum dispersion amounts to $\Delta p_u^2 \sim m_p^2 c^2/2$ once the electrons reach the shock front, which corresponds to equipartition with the incoming ions.

Lemoine & Pelletier (2011) (2011MNRAS.418L..64L)

- Presence of hot thermal particles
- Thermal particles have large impact on photon production & absorption processes
- Expect "standard model" for afterglow to change dramatically

• Other people starting to quantify the changes expected

Ressler & Laskar (2017) (2017ApJ...845..150R)

Table 1

True	Expected
2.5	2.5
2×10^{-2}	0.1
2×10^{-3}	0.01
5.0	1.0
5.0	1.0
0.2	1.0

Jóhannesson & Björnsson (2018)

(2018ApJ...859L..11J)

- My current project:
 - Physically-motivated magnetic field structure
 - Analytical approximations

- Expect magnetic field to decay downstream from shock
- Specifically, $B \propto t^{-\alpha}$, where $\alpha \approx 0.5$ (Lemoine+ 2013)

- Want to get electron distribution for any shock without doing 8-80 hours of MC sims
- Do a suite of MC sims & get fitting formulas

the shock front at time t • Throw the decaying B-field and fitted electron distributions into model for shocked р plasma of GRB jet A В b θ ∱R_{obs} Integrate along lines of sight to get specific intensity: С $\frac{dI_{v}}{ds} = j_{v} + \alpha_{v}I_{v}$ $F_{v} = \int I_{v} d\Omega$ Ρ В $|\mathsf{R}_{\perp}|$ θ R_{I}

The present of low-energy electrons $F_{\nu} \propto \nu^{-1/2}$ • Throw the decaying B-field -5 = 3.3 sand fitted electron distributions [8] $F_{\nu} \propto \nu^{-p/2}$ -10 Log₁₀ VF_v [erg/ -12 -20 into model for shocked $F_{\nu} \propto \nu^{1/3}$ plasma of GRB jet ר_ע≪ע $F_{\nu} \propto \nu^{11/8}$ • Integrate along lines of -25sight to get specific intensity: 3 -15-126 PRELIMINAR Purple: Log₁₀ *v*F_v [erg/cm²/s] $\frac{dI_{v}}{ds} = j_{v} + \alpha_{v}I_{v}$ $F_{v} = \int I_{v} d\Omega$ -5 $t_{obs} = 3.3$ -10 $F_{\nu} \propto \nu^2$ $F_{\nu} \propto \nu^{1/3}$ -15 Red: $\Gamma_{sh,LOS}$ u_{obs} = 17 d -20 3 -9 6 -12-6 Log₁₀ E_y [MeV]

The future of low-energy electrons

- Can now rapidly (seconds-minutes) generate spectra & light curves for huge parameter space of GRBs
- Refit observed GRBs to measure effects of thermal electrons & other physically-motivated changes to standard picture, where ≈97% of electrons are thermal
 Ressler & Laskar (2017) (2017ApJ...845..150R) Table 1 MCMC Parameter Fits

True	Expected
2.5	2.5
2×10^{-2}	0.1
2×10^{-3}	0.01
5.0	1.0
5.0	1.0
0.2	1.0
	$ \begin{array}{r} 2.5 \\ 2 \times 10^{-2} \\ 2 \times 10^{-3} \\ 5.0 \\ 5.0 \\ 0.2 \end{array} $

Conclusions

- Presence of hot thermal particles robustly required by plasma physics
- Thermal particles have large impact on photon production & absorption processes
- Expect "standard model" for afterglow to change dramatically

