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If you remember one thing...
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Figure 11. Temporal evolution of the post-shock particle spectrum
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g Outline

* GRBs and afterglows
* “Thermal” electrons: case for, and consequences of

* A semi-analytic model for GRB afterglows
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,S Background

The sky in gamma rays (as seen by Fermi space telescope)
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,5 Background

Afterglow is long-lived (hours, days, months) multiwavelength
relic of a gamma-ray burst (GRB)

Jet collides with
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The case for low-energy electrons

Works really well most of time, ...

Perley et al. (2014)
(2014Ap)...781...37P)
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Figure 10. Observations of the atterglow of GRB 130427A spanning from the low-frequency radio to the 100 GeV LAT bands, interpolated to a series of coeval
epochs spanning from 0.007 days (10 minutes) to 130 days after the burst. Overplotted over each epoch is our simple forward+reverse shock model from standard
synchrotron afterglow theory, which provides an excellent description of the entire data set, a span of 18 orders of magnitude in frequency and 4 orders of magnitude
in time. The solid line shows the combined model, with the pale solid line showing the reverse-shock and the pale dotted line showing the forward-shock contribution.
The “spur” at ~210'> Hz shows the effects of host-galaxy extinction on the NIR /optical/UV bands. Open points with error bars are measurements (adjusted to be
coeval at each epoch time); pale filled points are model optical fluxes from the empirical fit in Section 3.4. The inset at lower left shows a magnified version of the
radio part of the SED (gray box) at t > 0.7 days.
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,5 Background

Many different models to explain broadband spectra and light
curves

Q @141k‘@®® 0%~ @ B @ 5

A complete reference of the analytical synchrotron external shock
models of gamma-ray bursts

a,d,e,*

He Gao®, Wei-Hua Lei ”®, Yuan-Chuan Zou °, Xue-Feng Wu ¢, Bing Zhang
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Many different models to explain broadband spectra and light
curves

However, current afterglow studies assume extremely simple
model for electrons accelerated by shock
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The case for low-energy electrons

Works really well most of time, but sometimes runs into

d |ff|C u Ity Perley et al. (2014)
(2014Ap)...781...37P)
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Figure 10. Observations of the atterglow of GRB 130427A spanning from the low-frequency radio to the 100 GeV LAT bands, interpolated to a series of coeval
epochs spanning from 0.007 days (10 minutes) to 130 days after the burst. Overplotted over each epoch is our simple forward+reverse shock model from standard
synchrotron afterglow theory, which provides an excellent description of the entire data set, a span of 18 orders of magnitude in frequency and 4 orders of magnitude
in time. The solid line shows the combined model, with the pale solid line showing the reverse-shock and the pale dotted line showing the forward-shock contribution.
The “spur” at ~210'> Hz shows the effects of host-galaxy extinction on the NIR /optical/UV bands. Open points with error bars are measurements (adjusted to be
coeval at each epoch time); pale filled points are model optical fluxes from the empirical fit in Section 3.4. The inset at lower left shows a magnified version of the
radio part of the SED (gray box) at t > 0.7 days.
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g The case for low-energy electrons

Works really well most of time, but sometimes runs into
d IffICU Ity Frail et al. (2000)

(2000Ap)...537..191F)

Furthermore, we find that the electrons and magnetic
field are close to equipartition with €, ~ ez ~ 0.5.

TABLE 2
MODEL PARAMETERS

Parameter Value

Forward Shock (ISM)

€e 084tggg

cn 0117007

Forward Shock (wind)

Ce 0.60 Laskar et al. (2016)
€B 0.40  (2016Ap)...833...88L)
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The case for low-energy electrons

Works really well most of time, but sometimes runs into

difficulty
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Figure 11. Posterior probability density functions of the physical parameters for GRB 120521C from MCMC simulations. We have restricted Ex jso.520 < 500,

€. < 1/3,and eg < 1/3.
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g The case for low-energy electrons

All these numbers relied on radio observations.

Why is radio leading to suspicious results? Look at the model:

(Electrons assumed to form power

A Early/late time law with index constant in time)

N(E)
But, with shock acceleration,
 Have “non-nonthermal”
particles: crossed shock but
didn’t enter acceleration process
E, E * Spectral index varies with

Energy Lorentz factor (will not be
constant in time)
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S The case for low-energy electrons

Sironi et al. (2013)
Know this from particle-in-cell €q (2013Ap)...771...545)

. . . 0 107* 10 107! 10°
(PIC) simulations of relativistic
low-magnetization shocks

¥ [e/wy]

Critical results:

* Plasma instabilities UpS
from shock transfer energy
from ions to electrons

¥, [c./mpl]

¥ [e/oy]

* Electrons, ions both
cross shock at E ~ yym c?

¥ [c/'wpl]

 Only small fraction (few %)

~100 0 100 200

enter shock accel process X=Xy (/]
& become cosmic rays




0

3

Know this from particle-in-cell
(PIC) simulations of relativistic
low-magnetization shocks

Critical results:

* Plasma instabilities UpS
from shock transfer energy
from ions to electrons

* Electrons, ions both
cross shock at E ~ yym c?

 Only small fraction (few %)
enter shock accel process
& become cosmic rays

m;/m,=25

The case for low-energy electrons

g=107°

Sironi et al. (2013)
(2013ApJ...771...54S)
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Figure 11. Temporal evolution of the post-shock particle spectrum
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The case for low-energy electrons
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S The consequences of low-energy electrons

Use PIC results to guide Monte Carlo simulations of shock accel
process in GRB afterglow

Why MC?

* PICsims ~10° cm
across, forward shock
>1013 cm. Too large
space/time domain
for computation

e MC approach balances \
versatility with Loy
simplicity: computable Promo

emission

On des ktOp Afterglow

-100 0 100 200
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S The consequences of low-energy electrons

* Model shock acceleration process at select points in afterglow,
then compute photon production

Warren et al. (2017)
(2017ApJ...835..248W)
UpS

* Retain all shocked plasma, Fegion , eglomsishockesat
not just material currently s
interacting with shock

Shockat t;

Precursor at t;
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g The consequences of low-energy electrons

* Model shock acceleration process at select points in afterglow,
then compute photon production

Warren et al. (2017)
(2017ApJ...835..248W)

e Retain all shocked plasma,
not just material currently
interacting with shock

Note large
populations at
GeV energies!

Logyo (P/mye)>2* dN/dp [#/m.c]
: ;
15

(o)}
s

* Consider 3 cases:
» NT-only: ignore thermal
population v
> TP (test particle): assume Ik 7.=2 e, NL -
inefficient injection to 64 ’ 64 Jh .
shock accel process 62_2 P R 1'0 62 Aol
> NL (nonlinear): assume o319 [mye] Logig P [mgel
efficient injection, & all consequences

(o)}
>
T

(o)]
(o)]
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The consequences of low-energy electrons

* Model shock acceleration process at select points in afterglow,
then compute photon production

* Photon processes treated:
» Synchrotron
> Inverse Compton
= CMB
= Synch. photons
= [SRF
> (p-p) m production
» Absorption
= SSA (at radio)
= EBL (at GeV+)

(o)}
>

(o)}
s

_p'ﬁﬁl_
-. (I L | | T N | 1
IV NELEN LI M
_e
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LN
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Warren et al. (2017)
(2017ApJ...835..248W)

Note large
populations at
GeV energies!

2 0 2 4 6 8 10
L°g1op[mpc]



0

S The consequences of low-energy electrons

* Model shock acceleration process at select points in afterglow,
then compute photon production

Warren et al. (2017)
(2017Ap)...835..248W)

* Photon processes treated:
» Synchrotron
> Inverse Compton
cBelAB=
= Synch. photons
AR

IoN

Log,q ¥F,, 1 Gpc [erg/cm?—s]

» Absorption
= SSA (at radio)
= EBL (at GeV+)

Logyo E, [MeV]
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* In X-ray & optical, all photons are synchrotron

e Just produced by different parts
of electron distribution

* Huge (100x) difference in
emission when thermal
particles included

 Later, all three models similar

since non-thermal tails almost
identical

* How to distinguish TP and NL?

Log,q vF,. 1 Gpc [erg em™2 s

-6

I
—
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w

The consequences of low-energy electrons
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Logy0 tobs [s] Warren et al. (2017)
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Look at spectral index

* Transition from thermal to
non-thermal is smoother
for NL model than for TP

model

* Thermal particles produce
hard-soft-hard variation in
spectral index

* Height, width affected by
efficiency of injection

* How to distinguish TP and NL?

Logyo (P/mye)*?* dN/
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The consequences of low-energy electrons

Warren et al. (2017)
(2017Ap)...835..248W)
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The consequences of low-energy electrons

* How to distinguish TP and NL?
Look at spectral index

* Transition from thermal to
non-thermal is smoother
for NL model than for TP

model

* Thermal particles produce
hard-soft-hard variation in
spectral index

* Height, width affected by
efficiency of injection

Logyo (P/mye)*?* dN/
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Zhang et al. (2007)
(2007ApJ...666.1002Z)
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The consequences of low-energy electrons

* How to distinguish TP and NL?
Look at spectral index

* Transition from thermal to
non-thermal is smoother
for NL model than for TP
model

* Thermal particles produce
hard-soft-hard variation in
spectral index

* Height, width affected by
efficiency of injection

Logyo (P/mye)*?* dN/

Zhang et al. (2007)
(2007Ap)...666.1002Z)
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g The consequences of low-energy electrons

* In radio band, thermal particles very important for both
emission and absorption

Log,, E, [MeV]
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g The consequences of low-energy electrons

* In radio band, thermal particles 10*

very important for both 21000
emission and absorption 2 00
3 10
* For same GRB parameters, =
huge boost (100x) in radio g
1 1 1 H o R ETIT BTSRRI B ST BRI T
emission with no change in ~ 0.1 T ST
optical, X-ray T 1000 evorrerm | I
|g - :
* Fitted GRB parameters will o 17 F It
be very different if thermal Yoo f N b Y
: . o E - ® e p 3
particles included - &t 7 XL
5 15" e .
— E A
> | e
‘l- 0.1 A R R B
> 1 10 100 1000 10* 10°

Peak flux density at 8.5GHz [uJy]
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g The consequences of low-energy electrons

* What about high-energy
photons (>100 MeV)?

* Electrons can emit by synchrotron
self-Compton process, so adding
lots of thermal electrons means
adding lots of SSC photons

* SSC production scales with n_ .2,
so large gains possible if
distribution mostly thermal

Warren et al. (2017)
(2017ApJ...835..248W)

L] I L) l L) l LI I LI ) I LI | l L]
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g The consequences of low-energy electrons

Sironi et al. (2013) (2013ApJ...771...54S)

. 100
* Presence of hot thermal particles =z
. . o 50
robustly required by plasma physics -
Ardaneh et al. (2015) 2 -100 0 100 200
(2015Ap)...811..57A) o=0

X~ Xghr [c/mp!]

lkeya, Matsumoto et al.
B, /V4rTngmec? (private communication)
zZ 0 e

.,‘..
A5 > 4T \
'4'1\_-}31‘ ,«J"
(G2 I 1T

A

2400 2500 2600 2700

This equation can be cast in the form X -(Clag,)
Medvedev (2006) o ), -
(2006Ap)...651L...9M) €. = NVEp.

; Consequently, their momentum
Note that we made no assumptions | . : 5 5 5
; dispersion amounts to Ap; ~ m,“c“/2 once the electrons reach the
compression has already occurred (

we are). We only used the fact that shock front, which corresponds to equipartition with the incoming

are due to proton currents, which ¢ 100S.

fields. These electrostatic fields local _ Lemoine & Pelletier (2011)
(2011MNRAS.418L..64L)
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S The consequences of low-energy electrons

Sironi et al. (2013) (2013ApJ...771...54S)

. 100
* Presence of hot thermal particles =z
. . o 50
robustly required by plasma physics -
=00 —-100 0 o/ 1?0 200
* Thermal particles have large impact -
on photon production & absorption e ;
processes 2z 400
5 10f ]
* Expect “standard model” for afterglow § '} :
to change dramatically I T R T R T S TR
MY "o 1000 . . . .
o 190 F I
i _ ?: 10 — NT";':» "': - ;
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Perley+ (2014) (2014Ap)...781...37P)
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The present of low-energy electrons

» Other people starting to quantify the
changes expected

[

Ressler & Laskar (2017) (2017Ap)...845..150R)

Table 1
MCMC Parameter Fits

Parameter True Expected
P 2.5 2.5
€ 2% 102 0.1
€p 2 % 10°? 0.01
I 5.0 1.0
Esy? 5.0 1.0

0.2 1.0 |

T T
10t ‘ 20 30 103 102 101
Eq [10%° erg] A, [1077] ng [em™?]

10—t 10—5 10~% 10—% 10—? 10-1
€e € €R

Jéhannesson & Bjornsson (2018)
(2018ApJ...859L..11))



0

3

The present of low-energy electrons

* My current project:
» Physically-motivated magnetic field structure

» Analytical approximations

Sironi et al. (2013) (2013ApJ...771...54S)

-100 0 100 200
X~ Xghs [c/mpi]

* Expect magnetic field to decay downstream from shock

W, t=6525

1071 | '
* Specifically, B oc t%, where | s anndd |
a=0.5 (Lemoine+ 2013) © W Mgy,

o=10""*
o=3x10"*

— =107

1
Sironi et al. (2013)

—400 =200 0 200 400 (2013ApJ...771...545)

(x—xu)(0 /10792, [c/w ]
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g The present of low-energy electrons
* Want to get electron distribution N(E) N
for any shock without doing distribution
8-80 hours of MC sims ower law tail
* Do a suite of MC sims & get |
fitting formulas et
E‘L 4 PR Energy
:é ELIMINA v
§ 2
) ° 26 -
2 - E 2.4 -
) £ 2.2 =
Z 3.5 o
] ” 2 7
’ A N B 10 100
1 10 100 r

shock
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g The present of low-energy electrons

the shock front
at time te

* Throw the decaying B-field
and fitted electron distributions
into model for shocked
plasma of GRB jet

* Integrate along lines of
sight to get specific intensity:

dl
~=j . +a,l, A 5

d ? |
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g The present of low-energy electrons W “N:e(

* Throw the decaying B-field 5 - 'Fa'.s =350 V“&\“\ For™ /2
and fitted electron distributions : :
into model for shocked
plasma of GRB jet

Log,o VF, [erg/cm?/s]

* Integrate along lines of
sight to get specific intensity:

dl 9 5
1% * N
:-]V-I_aVIV E
ds % o
S
F, =1, dQ >
L
= 15
o R
o
9

|
N
o
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g The future of low-energy electrons

e Can now rapidly (seconds-minutes) generate spectra & light
curves for huge parameter space of GRBs

e Refit observed GRBs to measure effects of thermal electrons &
other physically-motivated changes

to standard piCtU re, where =97% Ressler&Laskar':?O::) ;2017ApJ...845..150R)
able

Of electrons are thermal MCMC Parameter Fits
Parameter True Expected
P 2.5 2.5
e 2 x 1077 0.1
€p 2 % 1077 0.01
o 5.0 1.0
Esy® 5.0 1.0

far 0.2 1.0 |
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* Presence of hot thermal particles
robustly required by plasma physics =

* Thermal particles have large impact
on photon production & absorption

Conclusions

processes

* Expect “standard model” for afterglow

to change dramatlcally
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