Linear Analysis of Fast-Pairwise collective neutrino oscillations

in Core-Collapse Supernovae

Based on the results of realistic Boltzmann Simulations

Milad Delfan Azari
 Department of Physics, Waseda University

Collaborators.

Shoichi Yamada, Taiki Morinaga@Waseda University Wakana Twakami@ Waseda University \& YITP HirokiNagakura@Princeton University andKohsuke Sumiyosho Numazu College of Technology

Delfan Azari et al. (arXiv: 1902.07467)

Fate of a star depends on its MaSS

$M_{\text {star }} \gtrsim 8 M_{\text {sun }}$
 Core-Collapse Supernovae

Cassiopeia A

SN explosion and NS cooling

Shock in envelope \& PNS cooling

Why neutrinos?

\checkmark almost all of the binding energy of NS liberated in the gravitational collapse is emitted in the form of neutrinos and the kinetic energy of matter in the supernova explosion is just 1% of this energy.
\checkmark In the v - heating mechanism, a fraction of the electron-type neutrinos and antineutrinos are re-absorbed by the matter between the shock front and the socalled gain radius and deposit their energy to push the stagnated shock again.

Matter effect $r>\sim 10^{3} \mathrm{~km}$
Wolfenstein PRD 17, 2369, 1978

$v-v$ self interaction $r \sim 10^{2} \mathrm{~km}$

What fast pairwise means?

\checkmark Collective pair conversion $v_{e} \bar{v}_{e} \rightleftarrows v_{x} \bar{v}_{x}$ by forward scattering maybe generic for SN neutrino transport
\checkmark Depending on the angular intensity, this rate is "Fast"

Motivation

\checkmark Problems remaining;

- No successful explosion model for CCSNe and
- Collective neutrino oscillation has been ignored \checkmark Why?

Because it is difficult !

Motivation

\checkmark Problems remaining;

- No successful explosion model for CCSNe
and
- Collective neutrino oscillation has been ignored
\checkmark Our goal;
Study the collective neutrino oscillations and see whether they effect the explosion mechanism or no

Basic Equations and Formulae

Equation of Motion:

$$
\left(\partial_{t}+v \cdot \nabla_{r}\right) \rho=i[\rho, H]
$$

$$
\rho=\frac{f v_{e}+f v_{x}}{2}+\frac{f v_{e}-f v_{x}}{2}\left(\begin{array}{cc}
s & S \\
S^{*} & -s
\end{array}\right),
$$

$$
H=\frac{M^{2}}{2 E}+v^{\mu} \Lambda_{\mu} \frac{1}{2} \sigma_{3}+\sqrt{2} G_{F} \int d \Gamma^{\prime} v^{\mu} v^{\prime}{ }_{\mu} \rho^{\prime}
$$

$$
\begin{aligned}
& M^{2}: \text { Mass-squared matrix } \\
& v^{\mu}:(1, \mathrm{v}) \\
& \Lambda^{\mu}: \sqrt{2} G_{F}\left(n_{e}-n_{e^{+}}\right) u^{\mu} \\
& d \Gamma^{\prime}=\mathrm{dv} / 4 \pi
\end{aligned}
$$

Basic Equations and Formulae

Linearized Equation of Motion:

$$
\begin{aligned}
& i\left(\partial t+v \cdot \nabla_{r}\right) S_{v}=v^{\mu}\left(\Lambda_{\mu}+\Phi_{\mu}\right) S_{v}- \\
& \int \frac{\mathrm{d} v^{\prime}}{4 \pi} v^{\mu} v^{\prime}{ }_{\mu} G_{v^{\prime}} S_{v^{\prime}} \\
& G_{v}=\sqrt{2} G_{F} \int_{0}^{\infty} \frac{d E E^{2}}{2 \pi^{2}}\left[f_{v_{e}}(E, \mathrm{v})-f_{\bar{v}_{e}}(E, \mathrm{v})\right] \\
& \quad \Phi^{\mu} \equiv \frac{\mathrm{dv}}{4 \pi} G_{v} v^{\mu}
\end{aligned}
$$

Assuming the solutions in the form of ;

$$
S_{v}(t, r)=Q_{v}(\Omega, K) e^{-i(\Omega t-K \cdot r)}
$$

$$
v^{\mu} k_{\mu} Q_{v}=a^{\mu}
$$

where ; $\quad a^{\mu} \equiv-\int \frac{d v^{\prime}}{4 \pi} v^{\mu} v^{\prime}{ }_{\mu} G_{v^{\prime}} Q_{v^{\prime}}$

$$
k^{\mu}=K^{\mu}-\Lambda^{\mu}-\Phi^{\mu} \text { with } k^{\mu}=(\omega, \mathbb{k})
$$

$$
\Pi^{\mu \nu}(\omega, \mathbb{k}) a_{v}=0
$$

Polarization tensor $\Pi^{\mu \nu}=\eta^{\mu \nu}+\int \frac{d V}{4 \pi} G_{V} \frac{v^{\mu} v^{v}}{\omega-V \cdot k}$

$$
\mathrm{D}(\omega, \mathrm{k}) \equiv \operatorname{det}[\Pi]=0
$$

Background Numerical Model

\checkmark Results of the realistic 2D simulations on the
K-Supercomputer Nagakura et al., ApJ 854, 136 (2018)
\checkmark For non-rotating progenitor model of $M_{\text {star }}=11.2 M_{\odot}$
Woosley et al., Reviews of Modern Physics 74, 1015 (2002)
\checkmark With the Boltzmann equation for neutrino transport being solved and special relativistic effect with a two energy grid technique. Naggawrac tal. Apls 214,16 (2014)
\checkmark Newtonian hydrodynamical equations \& the Poisson equation for self-gravity were solved simultaneously.

Method

$\mathrm{r}=44.8 \mathrm{~km}$ and $\mathrm{t}=15.0 \mathrm{~ms}$ post bounce

$\mathrm{t}=15.0 \mathrm{~ms}$

Results - Realistic data

Dispersion relation

Rendering of the neutrino distribution

Real part of $\operatorname{det} \Pi=0$
Imaginary part of $\operatorname{det} \Pi=0$
$\omega=10+i 20$

NO crossing in Re k, Means NO instability is expected

No oscillation so far

How \& under what condition can we obtain the oscillation?

Results- Scaled data

(k- towards crossing

25

31

35

45

49

Modified data

Dispersion relation

Neutrino distribution

Imaginary part of $\operatorname{det} \Pi=0$

$$
\omega=-5+i 1
$$

$$
\omega=-5+i 1.3
$$

$\omega=-5+i 1.6$

There is crossing in Re k, Means; instability is expected

Results- Scaled data

(k- towards z-direction)

25
31
35

39.5

45

49

Modified data

Dispersion relation

Neutrino distribution

Imaginary part of det $\Pi=0$
$\omega=0.1+i 0$
$\omega=0.1+i 0.02$
$\omega=0.1+i 0.07$

There is crossing in Re k, Means; instability is expected

Summary and future works

\checkmark Fast-pairwise collective neutrino oscillations in core-collapse supernovae has been studied quantitatively.
\checkmark We confirm that there is no sign of instability which leads to the conversion in case of the realistic data analysis.
\checkmark The possible oscillation conditions in different radii and time steps has been studied.
\checkmark A systematic survey for all radii based on the angular distributions difference between the electron-neutrinos and anti-electron type neutrinos.
\checkmark As recently some data for the 3D simulations from my colleagues is available, the similar investigations might be a point of interest.
\checkmark This method might be applicable to other astrophysical objects such as NS-mergers disks, etc. We plan to investigate the conversion possibilities in these objects in near future.

