OUTFLOWS FROM NEUTRON-STAR MERGERS (AND RELATED ISSUES)

OLIVER JUST

ASTROPHYSICAL BIG BANG LABORATORY

RIKEN

RIKEN-RESCEU JOINT SEMINAR

WITH: H.-TH.-JANKA, A. BAUSWEIN, S. GORIELY, R. ARDEVOL, M. OBERGAULINGER, S. NAGATAKI, R. GLAS, AND OTHERS

Max Planck Institute for Astrophysics

Universe

Excellence Cluster European Research Council

Established by the European Commission

dynamical/prompt ejecta

- → tidal tails
- → shock-heated

Movie: NS-NS Merger (SPH simulation by A. Bauswein)

Prompt / dynamical ejecta

(qualitatively consistent with works by, e.g., Hotokezaka '13, Wanajo+Sekiguchi '14,'16, Radice '16, Foucart '16, Martin '18)

Prompt / dynamical ejecta

(qualitatively consistent with works by, e.g., Hotokezaka '13, Wanajo+Sekiguchi '14,'16, Radice '16, Foucart '16, Martin '18)

(if observed independently)

14 20 13.5 13 10 12.5 12 y [km] 11.5 10.5 -30 -20-100 10 20 30 x [km] 12.6867 ms

from collision shock

- -> high Ye
- -> less lanthanides
- -> lower opacity
- -> blue Kilonova
 - (if observed independently)

dynamical/prompt ejecta

- → tidal tails
- → shock-heated

post-merger ejecta

- → neutrino-driven
- → viscous/MHD driven expansion
- → MHD turbulence

PHYSICS OF POST-MERGER CONFIGURATION

Mass accretion, wind generation, and jet launching highly sensitive to angular momentum transport and neutrino cooling and heating

Post-merger BH-torus remnant

(OJ, Bauswein, Ardevol, Goriely, Janka '15)

(qualitative agreement with Fernandez '13, Wu '16, Siegel '18)

Post-merger BH-torus remnant

early phase: ejecta (mainly) driven by neutrino-heating

Ye in ejecta determined by neutrino captures

$$\begin{array}{ccc} n + \nu_e \to p + e^- \\ p + \bar{\nu}_e \to n + e^+ \end{array} \longrightarrow \begin{array}{ccc} Y_e & \longrightarrow & Y_e^{\nu} & \simeq & \left(1 + \frac{L_{\bar{\nu}_e}}{L_{\nu_e}} \frac{\varepsilon_{\bar{\nu}_e} - 2Q_{np}}{\varepsilon_{\nu_e} + 2Q_{np}} \right)^{-1} \end{array}$$

Post-merger BH-torus remnant

later phase: ejecta (mainly) driven by viscosity (turb. ang. mom. tr.)

time = 2 s

Ye in ejecta determined by electron/positron captures

$$\begin{array}{ccc} p + e^- \to n + \nu_e \\ n + e^+ \to p + \bar{\nu}_e \end{array} \longrightarrow \begin{array}{ccc} Y_e & \longrightarrow & Y_e^\beta & = & Y_e(\rho, T, \mu_\nu = 0) \end{array}$$

Nucleosynthesis yields of BH-torus ejecta

IMPACT OF NU-NU OSCILLATIONS ON THE NEUTRINO-DRIVEN WIND COMPONENT

(Wu, Tamborra, OJ, Janka, 2017PhRvD, 96I3015W)

"fast pairwise flavor conversions" may lead to flavor equilibration on length scales of **O(10cm)** (e.g. Sawyer+ 05, 09, 16)

our simplified, exploratory study indicates that neutrino-driven ejecta may remain more neutron rich

•

dynamical/prompt ejecta

- → tidal tails
- → shock-heated

post-merger ejecta

- → neutrino-driven
- → viscous/MHD driven expansion
- → MHD turbulence

BOTH ejecta types can contain high-Ye and low-Ye components => observational distinction difficult

(short gamma-ray burst) jet?

- \rightarrow from neutrino pair annihilation?
- → from MHD Blandford-Znajek mech.?
- → Magnetar spindown?

 jet is successfully launched, but then dissipates most of its kinetic energy into cloud of dynamical ejecta

choked jet, pair-annihilation NOT powerful enough

NS-BH MERGER

- → no dynamical ejecta in polar regions → jet can expand freely
- but energy still too low to explain majority of sGRBs
- neutrino pair-annihilation not powerful enough to explain sGRBs

GW170817/AT2017GFO

GW170817 + EM COUNTERPARTS

50

- Mtot = M1 + M2 ~ 2.74 Msun **→**
- M1/M2 ~ 0.7 1 **→**

→

- blue ejecta component with $<Y_e>> 0.25$ Μ ~ 0.01-0.03 Msun
- red ejecta component with $< Y_e > < 0.25$ ~ 0.01-0.03 Msun Μ
- Iow-luminosity gamma-ray burst with Epeak ~ 100keV

GW170817 + EM COUNTERPARTS

- → Mtot = M1 + M2 ~ 2.74 Msun
- → M1/M2 ~ 0.7 1
- → blue ejecta component with <Y_e> > 0.25
 M ~ 0.01-0.03 Msun

→ many studies on interpretation of EM signals, e.g., Kasen '18, Shibata '18, Metzger '18, Mooley '18, Gottlieb '18, Bromberg '18, MacFadyen '18, ...

> shock-heated dynamical ejecta and/or neutrino-processed ejecta launched from a HMNS remnant? *High mass and velocity still enigmatic...*

red ejecta component with
 <Y_e> < 0.25
 M ~ 0.01-0.03 Msun

→ low-luminosity gamma-ray burst with E_{peak} ~ 100keV dynamical ejecta launched during merger or viscous ejecta from the remnant?

shock breakout emission or cocoon emission from structured jet. *High Epeak still puzzling...*

→ major open questions remain...better models needed

DELAYED COLLAPSE IS VERY LIKELY FOR GW170817: IMPLICATION FOR NUCLEAR EOS

(Bauswein, OJ, Janka, Stergioulas, 2017ApJ, 850L, 34B)

(also several other EOS studies, e.g., Margalit+ '17, Rezzolla+ '17, Ruiz+ '17, Radice+ '17)

CCSN EXPLOSION MECHANISM: CODE COMPARISON

WHY CODE COMPARISONS?

Approximate neutrino transport schemes:	Boltzmann-solvers:
 local cooling schemes neutrino-leakage schemes Flux-limited diffusion M1 Ray-by-Ray approximation 	 discrete ordinate method Monte Carlo tangent-ray scheme (only Ray-by-Ray)
 computationally efficient possible to explore larger parameter space accuracy may be sufficient for many questions 	 potentially most accurate provide reference solutions for approximate methods
 potentially large uncertainties impact of each approximation must be tested individually for each application 	 affordable resolution limited, impact not well known small number of available models: cross-comparisons and parameter exploration unfeasible
cross-comparisons invaluable to assess reliability of final conclusions	
particular challenges in multi-D comparisons: high computational costs per simulation, turbulence, resolution, stochasticity	

COMPARISON STUDY IN 2D

(OJ, Bollig, Janka et al, '18)

Aims:

- compare M1-RbR (ALCAR) with Boltzmann-RbR (VERTEX)
- compare M1-RbR with unconstrained M1
- test other common approximations used for neutrino transport

Summary

- NS mergers produce a variety of different outflow components with characteristic nucleosynthesis signature as well es EM signal
- observed Kilonova for GW170817 is probably due to a mixture of dynamical, neutrino-driven, viscously driven, MHD-driven ejecta => however, safe identification not yet possible => better models needed
- the sGRB jet most likely not powered by neutrino pair-annihilation
- new method to constrain NS radius, R_NS > 10.7 km if GW170817 was a delayed collapse
- neutrino oscillations might have strong impact on Ye

•

- CCSNe: M1 code ALCAR compares well with Boltzmann code VERTEX using RbR approximation
- RbR approximation facilitates explosions in 2D, but not in 3D
 - significant stochastic scatter of explosion times for same initial conditions
 => need to be careful when comparing models in the literature