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• Core-collapse Supernovae:  
explosive death of massive star 

• Stellar core-collapse  
→ explosion by released gravitational energy

©NASA, ESA/Hubble
SN1987A

Core-collapse supernovae
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• Core-collapse by iron photodissociation/electron 
capture reactions 

• Finally, the collapse is stopped by nuclear force 
• The bounce shock is launched 
• The energy of the shock is lost by photodissociation 

→The shock stalls

Shock

Stellar core bounce
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• How to revive the shock? 
• The gravitational energy is contained in proto-
neutron star. 

• PNS evolves to be NS with emitting neutrinos 
• The neutrino heating mechanism: emitted neutrinos 
heat the shock to revive.

Shock PNS

Neutrino heating mechanism



The progress in CCSNe sim.
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• Neutrinos rarely interacts 
→ Boltzmann eq. 

• Phase space dimension: 
‣ 3 for spherical sym. 
‣ 5 for axisym. 
‣ 6 without sym. 

• Approx. to reduce the cost

Microphysics is also important, but neglected here.
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• The gravity should be 
general relativistic 

• Numerical relativity is 
the best, but difficult 

• Newtonian, or approx.

Microphysics is also important, but neglected here.
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Trajectory of shock 
→shrinking

1D1D: fail to explode 

The progress in CCSNe sim.
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2D1D: fail to explode 
2D: (sometimes) explode 
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The progress in CCSNe sim.

‣ observed energy: 1051 erg, simulated energy: 1050 erg 
‣ neutrino transport: not Boltzmann eq., but approx. eq. 
‣ even qualitatively different results 

• Observed explosion is not yet reproduced
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The progress in CCSNe sim.
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Our work
•Boltzmann equation 

•Newtonian Hydrodynamics 

•Newtonian Gravity

Acceleration terms to track the PNS
PNS kick may be found (Nagakura in prep.)



Our work

• The Boltzmann-radiation-hydrodynamics code 
• There are several EOS models 

‣ EOS comparison paper: LS VS FS 
• The simulation with LS EOS shows shock revival, but probably due to 
an artifact of the single-nuclear approximation 

• Detailed analysis will appear (Harada in prep.)
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Rotation

Stellar coreShock

•Both positive and negative effects on shock revival 
•Neutrino distributions are distorted 
•(Thanks to the Boltzmann solver,) The accuracy of 
approximation is checked. 

• Presented in Harada+ (2019)

Centrifugal force



Setup
•11.2 M⦿ progenitor of Woosley+ (2002) 
•Shellular rotation (almost the fastest according to 
current stellar evolution theory) 

•Furusawa-Shen equation of state 
•Neutrino reactions 

•Notation:



Entropy distribution
•Time evolution until ~200 ms after bounce.



Shock evolution
•Postbounce evolution until ~200 ms 
•The difference between rotating & non-rotating model
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Neutrino ang. distribution
•Distribution functions at ~10 ms after bounce.
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•Distribution functions at ~10 ms after bounce.

Neutrino ang. distribution



Moment formalism
•Boltzmann equation

zero-th 
moment first 

moment



Eddington tensor
•Evaluation of M1-closure scheme-Eddington tensor

Eddington fac. Flux fac.

Boltzmann-Eddington 
tensor

M1-Eddington tensor



Eddington factor
•Eddington tensor at ~10 ms after bounce 
•spatial distribution of eigenvalues 
•~20% error in M1-closure scheme
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actual M1

Eddington factor
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•Eddington tensor at ~10 ms after bounce 
•Comparison between Boltzmann- and M1-Edd. factors 
•Information which distinguish these situations may 
improve the accuracy

•Prolateness of distribution  
•M1: estimated from deviation



Dimensionalityν-transport

Gravity
1D: fail to explode 
2D: (sometimes) explode 
3D: (sometimes) explode 
Current work

Future prospects

Newtonian

approx. GR

GR

1D
2D

3D

approx.

Full-Boltzmann



1D: fail to explode 
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1D: fail to explode 
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‣ Numerical rel. 
‣ GR-hydro 
‣ Boltzmann in 
curved 
spacetime



1D: fail to explode 
2D: (sometimes) explode 
3D: (sometimes) explode 
Current work 
3D-Boltzmann 
GR-Boltzmann 
Final goal
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Summary
• Simulations for the neutrino heating mechanism of 
CCSNe have been performed. 

• The Boltzmann-radiation-hydrodynamics code is one of 
the most sophisticated code. 

• Unique feature is obtained by using the Boltzmann code.
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