Evolution of magnetar-powered supernovae

Miyu Masuyama, RESCEU collaborator : Toshio Nakano, Toshikazu Shigeyama

RIKEN-RESCEU joint meeting 2016/07/25-27

1. Neutron stars

Neutron Stars (NS)

- generated by core collapse supernovae
- observed NS, a few hundreds

Power sources of them

- rotation energy
- gravitational energy of accreting matters
- thermal energy
- magnetic field energy

1. Neutron stars

Neutron Stars (NS)

- generated by core collapse supernovae
- observed NS, a few hundreds

Power sources of them

- rotation energy
- gravitational energy of accreting matters
- thermal energy
- magnetic field energy
- -> We focus on NS with strongest magnetic fields, "Magnetar".

2. Magnetars

• NS with strong magnetic fields $P \sim 2 - 10 \text{ sec}, \dot{P} \sim 10^{-13} \text{ s/s}$ $B \propto \sqrt{P\dot{P}} \sim 10^{14-15} \text{ G}$

(typical neutron stars : $B \sim 10^{12} \text{ G}$)

- Spin down. Pdot > 0
- Radiate X-ray by using magnetic fields. L_x ~ 10³⁵ erg/s >> L_{spin}

-> rapidly spin & Highly magnetize at their birth.

-> The mechanism for growth of strong magnetic fields & what supernovae generate magnetars have not been well understood.

3. Previous works

discovered magnetars : about 30

(ATNF pulsar catalog)

some associate with SNR

(e.g. Kes 73, CTB 109)

- Observations of such SNR:
 - Progenitors are very massive ($>30M_{\odot}$)

(e.g. Figer +05, Kumar +12)

• $E_{SNR} \sim 10^{51} \, erg$

(e.g. Vink & Kuiper 06)

- Theoretical prediction *: •
 - Erot ~ 10⁵² erg are injected

CTB109 (SNR) & 1E2259+586 (magnetar)

- to stellar envelope by magnetic dipole radiation.
- * Magnetars have very short spin periods ($P_0 < 3ms$) and highly strong magnetic field ($B_0 > 10^{15}G$) at their birth (α -dynamo effect) (Duncan & Thompson 92). Therefore they have $E_{rot} \sim 10^{52}$ erg and inject its energy to stellar envelope.

North east (NE)

North West (NW)

506037010

4. Our work

- (A). A mechanism without rapidly rotation amplify a magnetic field of magnetar. -> E_{rot} < 10⁵² erg
 (B). Most of rotation energy is used for something (e.g. GW, binding energy).
- (C). Underestimate energy of SNR associated with magnetars. -> E_{SNR} > 10⁵¹ erg

4. Our work

(A). A mechanism without rapidly rotation

amplify a magnetic field of magnetar. -> $E_{rot} < 10^{52}$ erg

- (B). Most of rotation energy is used for something (e.g. GW, binding energy).
- (C). Underestimate energy of SNR associated with magnetars. -> E_{SNR} > 10⁵¹ erg

-> We perform 1D hydrodynamical simulations of evolutions of magnetars for 10,000 yrs to investigate the relation between E_{rot} and E_{SNR}.

5. Set up for simulations

5. Set up for simulations

5. Set up for simulations

6. Magnetars as a explosion engine

agnetar

$$E_{rot} = 10^{52} \text{ erg} \sim \frac{1}{2} l\omega^{2}$$
ect energy to stellar envelope
magnetic dipole radiation

$$\frac{dE}{dt} = \frac{E_{rot}}{t_{p}} \frac{1}{(1 + \frac{t}{t_{p}})^{2}}$$

$$t_{p} = 10^{3} \sec \left(\frac{P_{0}}{1\text{ms}}\right)^{2} \left(\frac{B_{0}}{10^{15}\text{G}}\right)^{-2}$$

$$E_{rot} = \int \frac{dE}{dt} dt = 10^{52} \exp \left(\frac{P_{0}}{1\text{ms}}\right)^{-2}$$

7. Time evolution of shock waves

8. Energy of neutrino-heating

• ESNR ~ Erot + Ev,heating + Enuc + Ebind

-> The stalled shock is revived by depositing of a part of energy 10^{51} erg carried away by neutrino v_e, \overline{v}_e .

• $E_{v,heating} \sim 10^{51} \text{ erg}$

9. Energy of nuclear reactions

- $E_{SNR} \sim E_{rot} + E_{v,heating} + E_{nuc} + E_{bind}$
- rough estimation of nuclear energy under assumption that the matter which exceed T > 5×10^9 K will be ⁵⁶Ni.

$$\xrightarrow{} E_{\text{nuc}} = \frac{m_{28}_{\text{Si}} \times 2 - m_{56}_{\text{Ni}}}{m_{56}_{\text{Ni}}} \times M_{56}_{\text{Ni}} \times c^{2}$$

$$\sim 2.2 \times 10^{51} \text{ erg.}$$

$$\xrightarrow{\text{M}}_{\text{E}} \text{ bold}$$

$$\text{We should calculate hydrodynamical}$$

We should calculate hydrodynamical simulations including nuclear reactions⁹2 and feedback to hydrodynamical simulations for magnetar-powered supernovae.

10. Gravitational binding energy

- $E_{SNR} \sim E_{rot} + E_{v,heating} + E_{nuc} + E_{bind}$
- Progenitors of magnetars are considered to be massive stars. (e.g. Safi-Harb & Kumar 2012)

Magnetar	Progenitor mass
1E 1048.1-5937 (Gaensler+ 2005)	30-40 M®
CXO J164710.2-455216 (Muno+ 2006)	>40 M.
SGR1806-20 (Figer+ 2005)	~50 M●
SGR 1900+14 (Davies+ 2009)	17 M●
1E 1841–045 (Kumar+2014)	>> 20 M.
SGR 0526–66 (Uchida+2015)	~26 M●
1E 2259+586 (Nakano PhD thesis)	~40 M®

• $E_{bind} \sim -5 \times 10^{51} \text{ erg}$ (just before explosion)

in case that a progenitor mass is 40 M_{\bigodot}

11. Time evolution of energy

- **E**_{SNR} ~ E_{rot} + E_{v,heating} + E_{nuc} + E_{bind} ~ $10^{52} + 10^{51} + 10^{51} - 5 \times 10^{51}$
 - ~ 10⁵¹ erg

-> Most of the rotation energy 10^{52} erg is used to climb up the gravitational potential well of a massive star and the resultant SNR possesses the rest of the energy E_{SNR} ~ 10^{51} erg.

12. Summary

- We perform 1D hydrodynamical simulations to investigate the relation between energy of magnetars at their birth E_{rot} and energy of supernova remnants associated with magnetars E_{SNR}.
- Most of the rotation energy is used to climb up the gravitational potential well of a massive star and the resultant supernova remnant possesses the rest of the energy $E_{SNR} \sim 10^{51}$ erg.
- We should carry out simulations including nuclear reactions and feedback to hydrodynamics.