2016/7/27 RIKEN-RESCEU joint seminar

Contribution of Neutron-Star Merger to the R-process Chemical Evolution

Yutaka Komiya (University of Tokyo, RESCEU) <u>Collaborators</u> Toshikazu Shigeyama (U.Tokyo, RESCEU)

Introduction

- Neutron Star Merger (NSM)
- Observations of metal-poor stars
- R-process Chemical Evolution

Chemical Evolution Model

- Hierarchical galaxy formation
- Scape of NSM ejecta from proto-galaxy

Results

 \diamond

R-process source

Core collapse Supernova (CCSN)

e.g. Hillebrandt+ (1976)

<u>**R**-process site</u>

- Neutrino wind (Woosley & Hoffman 1992)
- Electron capture supernova (Wheeler et al. 1998 Wanajo et al. 2003)

Neutron Star Merger (NSM) e.g. Lattimer & Schramm (1974)

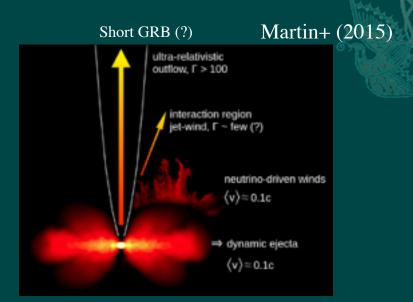
<u>R-process site</u>

- Dynamical ejecta
- Evaporating disk
- Neutrino wind

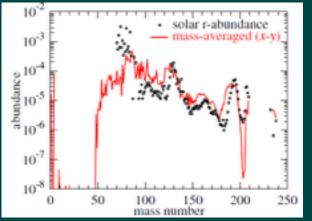
NSM ejecta r-process

- Dynamic ejecta
 - Tidally disrupted
 - Shock heated

Evaporating disk Neutrino driven wind


Ejecta mass : (dynamical)

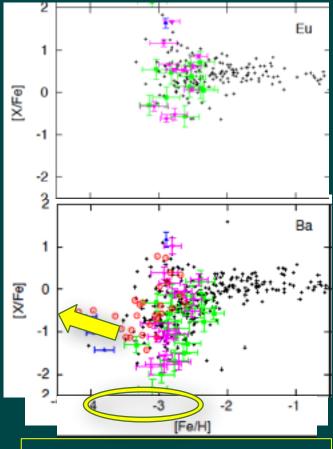
 $\begin{array}{l} 4 \times 10^{-3} - 4 \times 10^{-2} \ M_{\odot} \ (Rosswog+ 1999) \\ 10^{-3} - 2 \times 10^{-2} \ M_{\odot} \ (Bauswein+ \ 2013) \\ 10^{-4} - 2 \times 10^{-2} \ M_{\odot} \ (Hotokezaka+ \ 2013) \\ \ast \quad 0.01 - 0.15 \ M_{\odot} \ for \ NS-BH \ merger \end{array}$


- Velocity : 0.1 0.3 c
 - \diamond ~escape velocity of a NS

R-process

- Ye ~ 0.1
- ♦ scaled solar abundance (at $A \ge 80$)

Wanajo+ (2014)


Observations of Extremely metal-poor (EMP) stars

Large abundance scatter (2-3 dex)

- Rare event
- Decreasing trend as metallicity decrease at [Fe/H]< -2.3 on average * But, at [Fe/H]<-3.3, plateau is reached

<u>Scarcity of stars lacking r-</u> <u>process elements</u> (Roederer+ 2013, Komiya+ 2014)

- Ba is detected for almost all EMP stars.
- R-process is ubiquitous ?

※ Ba in EMP stars is originated with r-process

Chemical evolution:

Metal-poor stars:

probes for enrichment history of heavy elements Extremely metal poor (EMP) stars = Second (or very early) generations of stars ⇒ nucleosynthetic yield of an individual SN or NSM

<u>CCSN</u>

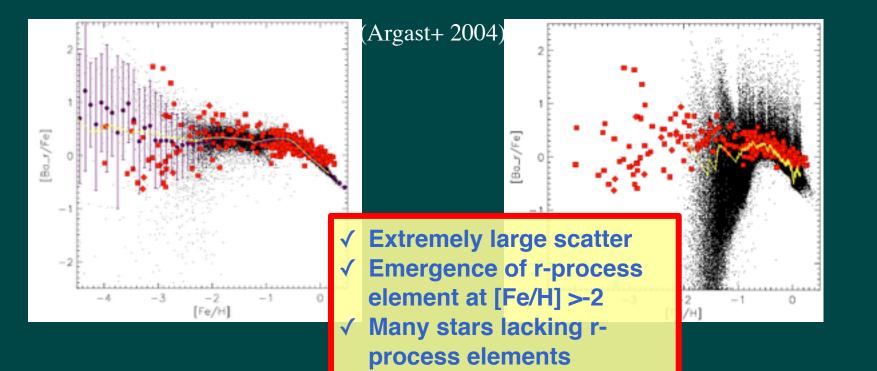
- ♦ Event rate: $\sim 10^{-2}$ yr⁻¹
- * Delay time: $\sim 10^7$ yr

✤ <u>NSM</u>

- ≫ Event rate: ~ 10^{-4} or 10^{-5} yr⁻¹
- Delay time: $\sim 10^9$ yr

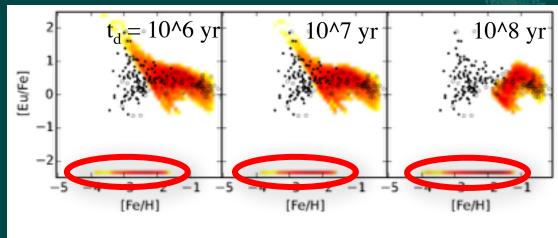
Chemical evolution:

CCSN scenario

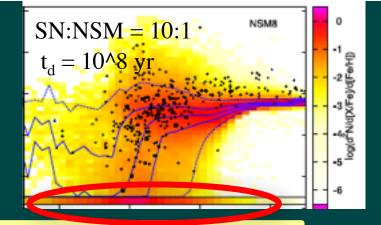

- \bullet Event rate: ~10⁻² yr⁻¹
- \bullet Yield: ~10⁻⁵ M_{sun}
- ♦ Delay time: $\sim 10^7$ yr

NSM scenario

 $\times 1/1000$ \otimes Event rate: 10⁻⁴ or 10⁻⁵ yr⁻¹


× 1000 \Leftrightarrow Yield: Yr~10⁻² M_{sun}

× 10 - 100 \diamond Delay time: $t_d \sim 10^8 - 10^9 yr$



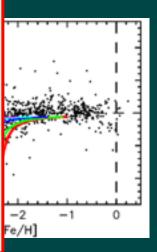
Chemical evolution

• Cescutti+ (2015)

Komiya+ (2014)

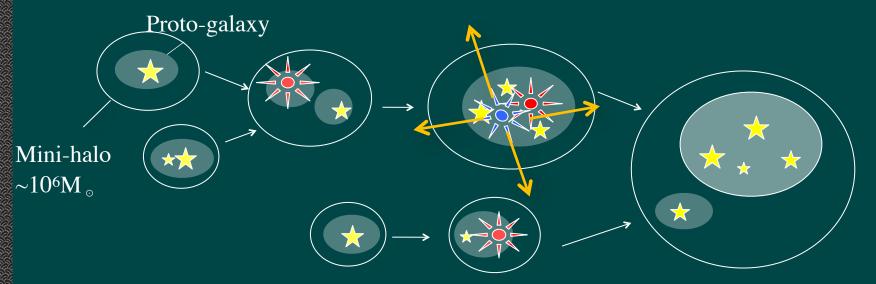
Very short (10^7 yr) delay time is required Many stars lacking r-process elements

Tsujimoto & Shigeyama (2014)


Propagation of NSM ejecta

R-process elements from NSM have large kinetic energy (v~0.2c)

→<u>cannot be trated as "fluid"</u>


* Stopping length of ¹⁵³Eu with $v_r = 0.2c$ (~2.9 Gev) $l_s \sim 2.6/(n/1cm^{-3})$ kpc

NSM volut Revisit the chemical evolution of r-process Ishimar Long major formation Inassi

CHEMICAL EVOLUTION MODEL

Hierarchical chemical evolution model Komiya et al. (2014, 2015)

Merger tree : extended Press-Schechter method Chemical evolution in merger trees Milky Way + satellites

- Different chemical abundance between proto-galaxies (Homogeneous chemical abundance inside each proto-galaxy)
- Register all the individual EMP stars
- SN triggered galactic wind →Metal pre-enrichment of intergalactic medium (IGM)
- NSM ejecta (r-process elements) spread beyond the proto-galaxy
- Metal pollution by ISM accretion for surfaces of EMP stars

Star formation, gas outflow

Star formation rate

$$M_* = \varepsilon_* M_{gas}$$

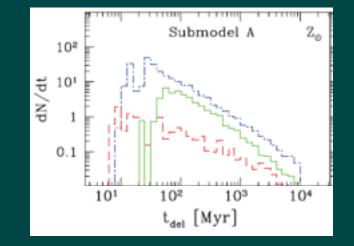
 $\stackrel{\text{(constant:)}}{\underset{(10^{\langle [Fe/H] \rangle} \propto M_{*}^{0.3}, Kirby+2013)}{(10^{\langle [Fe/H] \rangle} \propto M_{*}^{0.3}, Kirby+2013)}$

Gas outflow

- SN energy driven :
 - $\overline{E}_{out} = E_k (E_k >> E_{bin})$ $\overline{E}_{out} = \varepsilon_o E_k (E_k << E_{bin})$

$$E_{\rm w} = E_{\rm k} \frac{\epsilon_{\rm o} + E_{\rm k}/E_{\rm bin}}{1 + E_{\rm k}/E_{\rm bin}}, \quad M_{\rm w} = M_{\rm gas} \frac{E_{\rm w}}{E_{\rm bin} + E_{\rm w}}$$

NSM



1% of binary stars with NS mass range form coalescing NS binary

- * $8 25 M_{\odot}$ stars leave NSs
- ♦ (CCSN:NSM = 1000:1)

<u>Delay time</u> : t_d (Dominik+ 2012) $dN/dt_d \propto t_d^{-1}$

 $10^7 - 10^{10} \text{ yr}$ (<t_d>~10⁹ yr)

Ejecta velocity: $v_r = 0.2c$

<u>Yield</u>

- * $Y_r = 0.03 M_{\odot}$ (kilonova observations GRB 130603B, Tanvir+ 2013; Berger+ 2013)
- * Scaled solar abundance pattern $(\mathbf{Y}_{Eu} = 1.5 \times 10^{-4} \mathbf{M}_{\circ}, \mathbf{Y}_{Ba} = 1.2 \times 10^{-3} \mathbf{M}_{\circ})$

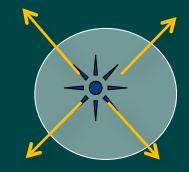
Propagation of NSM ejecta

Proto-galaxy

- Energy loss rate (Schlickeiser 2002)
 - $f = 1.82 \times 10^{-7} n_{\rm H} Z_{\rm eff}^2 (\beta) (1 + 0.00185 \ln \beta) / \beta \qquad [eV/s]$
 - $A^{2} 3.1 \times 10^{-7} Z^2 n_{\rm e} / \beta$ [eV/s]
- Stopping length (neutral gas)
 - $l_{\rm s} = (\gamma 1)mc^2/(dE/dt) v_{\rm r} \sim 2.6 \text{kpc}/(n/1 \text{ cm}^{-3})$ (^{153}Eu)
- Homogeneous mixing in each proto-galaxy

Escape fraction: f_{esc} (from proto-galaxy)

• $f_{\rm esc} = \exp(-R_{\rm g}/l_{\rm s})$


R_g: radius of a proto-galxy

(ionization)

(Coulomb)

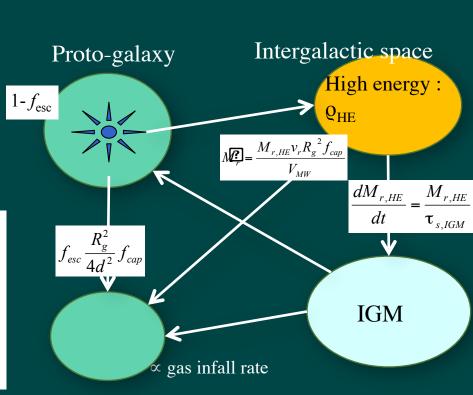
Intergalactic medium

- Energy loss timescale in IGM: $\tau_{stop} \sim 4.3 \times (n_{IGM}/10^{-5} \text{ cm}^{-3})^{-1} \text{ Gyr} \quad (neutral)$ $\sim 0.3 \times (n_{IGM}/10^{-5} \text{ cm}^{-3})^{-1} \text{ Gyr}$ (ionized)
- Cooled r-process elements mixed with IGM \otimes

Propagation of NSM ejecta

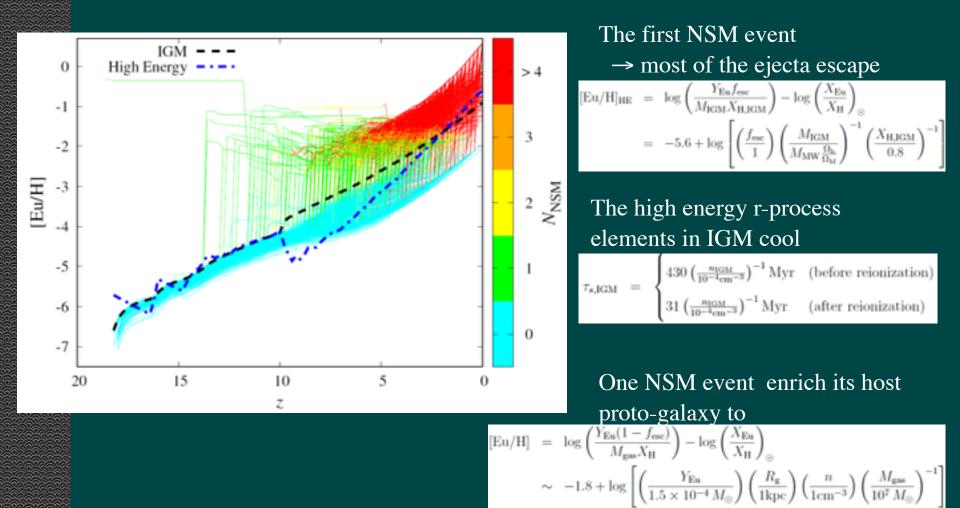
• Escape fraction: $f_{esc} = \exp(-R_g/l_s)$

<u>Capture by other proto-galaxies</u>


$$f_{esc} \frac{\pi R_g^2}{4\pi d^2} \left\langle 1 - \exp\left(-\frac{R_g}{l_s}\right) \right\rangle$$

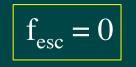
Accretion of enriched IGM

 $\langle \rangle$


 Enrichment of r-process elements in proto-galaxies

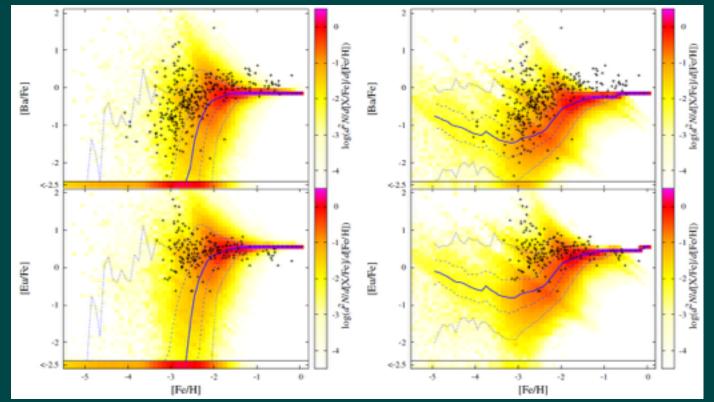
$$\begin{aligned} \frac{dM_{\text{gas},n}X_{i,n}}{dt} &= Y_i \sum_k \delta(t - t_{\text{NSM},n,k})(1 - f_{\text{esc},n,i}) \\ + Y_i \sum_{m \neq n} \sum_k \delta(t - t_{\text{NSM},m,k}) f_{\text{esc},m,i} \frac{\pi R_{\text{g},n}^2}{4\pi d_{n,m}^2} f_{\text{cap},n,i} \\ &+ \frac{M_{i,\text{HE}} \pi R_{\text{g},n}^2 v_r}{V_{\text{MW}}} f_{\text{cap},n,i} + \dot{M}_{\text{acc},n} X_{i,\text{IGM}} \end{aligned}$$


Enrichment history of r-process elements



Abundance distribution

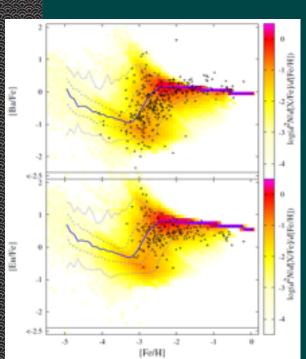
 $\epsilon_* \propto M_h^{0.3}$



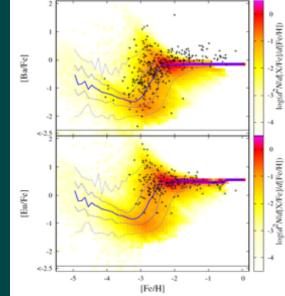
 $f_{esc} = \exp(-R_g/l_s)$

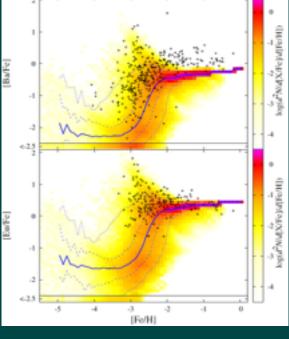
Abundance distribution

Constant SFE

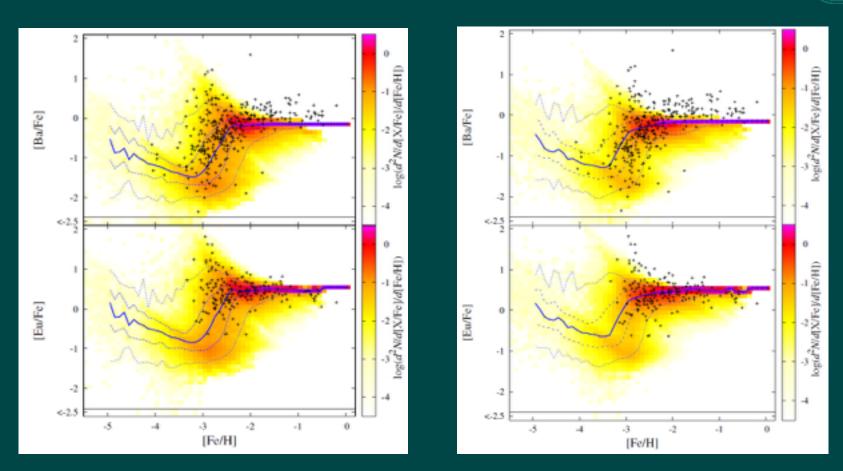


 $f_{esc} = 0$

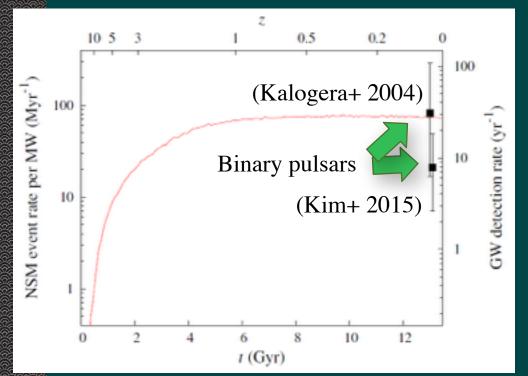

 $f_{esc} = \exp(-R_g/l_s)$


Delay time

$t_d = 10^7 - 10^10 \text{ yr}$


 $t_d = 10^{6} - 10^{8} \text{ yr}$

 $t_d = 10^8 - 10^10 \text{ yr}$

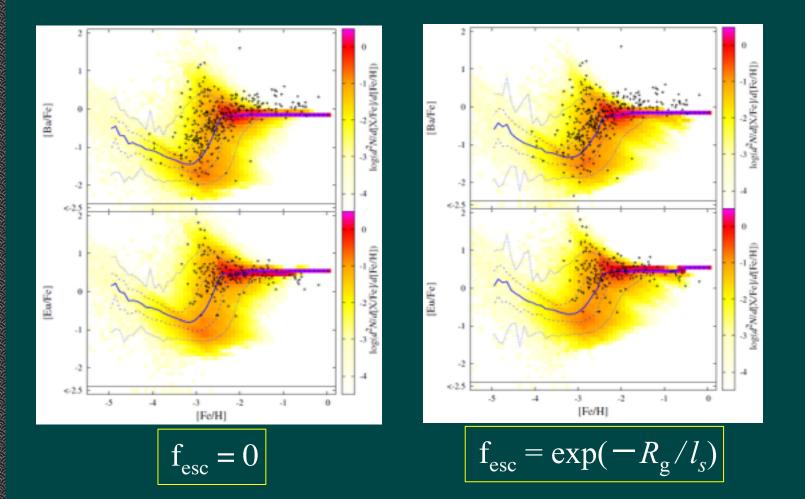

Event rate

1% of binaries with $M = 8 - 25 M_{\odot}$ Yr = 0.03M_{\odot} 10%,Yr = 0.003M_o

Event rate

1% of binaries with $m = 8 - 25 M_{\odot}$ = ~70 NSMs/Myr in the MW = ~30 GW events /yr (Advanced LIGO-Virgo)

Proper motion of NS binary


NS binary can go away from mini-halo

ATNF pulsar catalog

- ♦ 12 binary pulsars
- v_z = distance from the Galactic disk / age
 - \circ 10 binaries v_z < 5km/s
 - \diamond v_z =58km/s
 - \circ v_z =170km/s (but z=0.02kpc, age ~ 10^5 yr)

Proper motion of NS binary

Preliminar Kick velocity: v_{kick} Maxwellian velocity distribution wn If v_{kick} > escape velocity, a NS binary go to intergalactic space

Summary

Chemical evolution of r-process element with the Neutron Star Merger scenario considering the hierarchical formation of galaxies

- Previous studies point out inconsistency between the NSM scenario and observations of metal-poor halo stars
- Spread of NSM ejecta beyond a proto-galaxy ($l_s \sim 2.6$ kpc)
 - \Rightarrow Escape of r-process elements
- Our model can <u>successfully reproduce the observations of r-process elements in</u> <u>very metal-poor stars</u> when we assume_
 - Lower SFE in less massive galaxies
 - Escape of NSM ejecta from proto-galaxy
 - Pre-enrichment of IGM
 - Capture of high energy r-process elements

NSM

- Short delay time evets ($\sim 10^{7}$ yr) are required.
- \ast High yield (${\sim}0.03~M_{\odot})$ & low event rate (1% of NS binary) is preferred

Proper motion of NS binary can contribute the pre-enrichment of IGM