### X-Ray Spectroscopy of Supernova Remnants

#### Satoru Katsuda (Chuo University)

# SuperNova Remnant (SNR)



Hydrodynamic simulations (Chevalier & Blondin 1995; Warren & Blondin 2013)



Thermal emission model (by Herman Lee) 0.1 Fe L Mg <sub>Si</sub> 0.01  $10^{-3}$ Counts s<sup>-1</sup> keV<sup>-1</sup> Ar  $10^{-4}$  $10^{-5}$ Fe  $10^{-6}$  $10^{-7}$  $10^{-8}$  $10^{-9}$ 0.2 0.5 2 5 0.1Energy (keV)

SNRs are usually extremely hot (~10<sup>7</sup> K), so that they can efficiently emit X-rays. The X-ray emission includes a number of lines from almost all elements, allowing us to measure elemental abundances as well as elemental distribution.

X-ray observations of SNRs can directly test SN nucleosynthetic/explosion models.

(heating ISM) RIKEN-SESCUE Seminar@RESCUE

2016/07/26

7/26 Reverse shock (heating SN ejecta)

2/32

# Imaging Spectroscopy with X-Ray CCDs

X-ray CCDs allowed for detailed spatially-resolved spectroscopy.



Vink (2004)

# The jets are rich in Si (Not Fe!). There seems to be inversion of Si and Fe in the SE.

#### Need for High-Res. X-Ray Spectroscopy (E/AE>100)

- Ejecta dynamics
  - Reconstruction of 3D ejecta structures
    - $\rightarrow$  Explosion asymmetries & NS kicks
- Collisionless shock physics
  - $T_i$ - $T_e$  equilibration
  - Cosmic-ray acceleration
- Plasma diagnostics
  - Thermodynamic parameters
  - New radiative processes
- Composition measurements
  - Odd-Z/neutron-rich elements



## High-Resolution Spectroscopy with Hitomi



#### $\Box \ \lceil ASTRO-H \rfloor \rightarrow \ \lceil Hitomi \rfloor:$

- The 6<sup>th</sup> Japanese X-ray astronomy satellite
- Successfully launched on 2/17
- Lost its ground contact on 3/26

#### X-ray micro-calorimeter (SXS):

- E/∆E: ~200@1keV (Non-dispersive!)
- Spatial resolution: 1'
- FoV: 3'x3' (6x6 array)
- Dynamic range:0.2-10 keV



SXS detector assembly

#### Gratings onboard XMM-Newton & Chandra

#### XMM-Newton (RGS)



#### **Reflection grating**

Slitless  $\rightarrow$  Degradation in  $\lambda$  resolution:

 $\Delta \lambda \sim 0.13 * \Delta ext(arcmin) Å$  $\Delta ext_{min}(spatial resolution): 0.25'$ (E/ $\Delta E \sim 200 @1 keV$ ; cf. E/ $\Delta E \sim 20$  for CCD)

Strong for relatively large sources (a few arcmin size is OK)



Canizares et al. (2005) HIGH-ENERGY GRATING FACET

#### **Transmission grating**

Slitless  $\rightarrow$  Degradation in  $\lambda$  resolution:  $\Delta\lambda \sim 0.67 * \Delta ext(arcmin) Å$  $\Delta ext_{min}$  (spatial resolution): 0.01'

complementary Strong for small(")-scale features

2016/07/26

0.1 um

#### High-Res. X-Ray Spectroscopy (E/AE>100)

- Ejecta dynamics
  - 3D ejecta structures
    - $\rightarrow$  Explosion asymmetries & NS kicks
- Collisionless shock physics
  - T<sub>i</sub>-T<sub>e</sub> equilibration
  - Cosmic-ray acceleration
- Plasma diagnostics
  - Thermodynamic parameters
  - New radiative processes
- Composition measurements
  - Odd-Z/neutron-rich elements



### Good Targets to Reveal Ejecta Dynamics

• Galactic (so-called) Oxygen-rich SNRs



### Cassiopeia A: NS Kick?



# The NS is displaced from the expansion center, suggesting a kick.

V ~ 330 km/s? (proper motion not yet measured)

#### Spectroscopy with the Chandra HETG

#### Lazendic et al. (2006)





# Doppler Velocities $\rightarrow$ 3D Structure



### <u>G292.0+1.8</u>



Fast-moving knots in optical

### High-Res. X-Ray Spectroscopy with HETG

Bhalerao et al. (2015)



□ The ejecta are biased to the near side. → Asymmetric explosion? □ The ejecta distribution suggests  $R_{RS}/R_{FS} \sim 0.5$ .



Winkler & Kirshner 1985; Garber et al. 2010

One-sided O-rich fast-moving knots
 A recoiling (fast-moving) neutron star

V ~ 700 km/s

Becker et al. 2012

# Searching for Ejecta with X-Ray CCDs

SK 2008 PhD thesis



RIKEN-SESCUE Seminar@RESCUE

# **Discovery of X-Ray Emitting Ejecta**



### Mostly ISM. But, we do find ejecta which are concentrated in the NE. $\rightarrow$ Asymmetric explosion

2016/07/26

## **RGS Observation of the Ejecta**



#### Observation date: 2012-10-20 Exposure time: 21 ks

# RGS Spectra



#### Doppler velocities:

|       | Knot          | Filament    |
|-------|---------------|-------------|
| Reg A | -1290±60 km/s | 690±90 km/s |
| Reg B | -1440±60 km/s | 570±90 km/s |
| Reg C | -1590±60 km/s | 660±90 km/s |
| Reg D | -1560±60 km/s | 720±90 km/s |

Doppler shifts Knot: -1500 ± 200 km/s Filament: +650 ± 130 km/s

SK et al. (2013)

# Line-of-Sight Location of the SN Debris





RIKEN-SESCUE Seminar@RESCUE

### The Micro-X Sounding Rocket Program



#### Heine et al. 2013; Figueroa-Feliciano et al. 2012

#### Micro-X Spectrum in a 300 s Observation



#### Just launched on July 6<sup>th</sup> in 2016!

J.C.C.C.C

#### High-Res. X-Ray Spectroscopy (E/AE>100)

- Ejecta dynamics
  - 3D ejecta structures
    - $\rightarrow$  Explosion asymmetries & NS kicks
- Collisionless shock physics
  - T<sub>i</sub>-T<sub>e</sub> equilibration
  - Cosmic-ray acceleration
- Plasma diagnostics
  - Thermodynamic parameters
  - Radiative processes
- Composition measurements
  - Odd-Z/neutron-rich elements



# RGS Spectroscopy of SN 1006 NW Knot

Vink et al. (2003)



Knot's size ~ 0.4' (FWHM)  $\rightarrow$  RGS spectral resolution for O VII ~ 3 eV

2016/07/26

#### <u>Temperature Nonequilibration: T<sub>OVU</sub> >> T<sub>e</sub>!</u>



Dotted line: emission model w/o broadening Solid line: emission model w/ thermal broadening

 $\sigma = E_0 \sqrt{kT/mc^2}$ 

#### Coulomb Equilibration (+ Collisionless Heating)



#### High-Res. X-Ray Spectroscopy (E/AE>100)

- Ejecta dynamics
  - 3D ejecta structures
    - $\rightarrow$  Explosion asymmetries & NS kicks
- Collisionless shock physics
  - T<sub>i</sub>-T<sub>e</sub> equilibration
  - Cosmic-ray acceleration
- Plasma diagnostics
  - Thermodynamic parameters
  - New radiative processes
- Composition measurements
  - Odd-Z/neutron-rich elements



# RGS Observations of ISM-Dominated Regions in The Puppis A SNR





### Surprise from the Eastern Knot

Forbidden > Resonance!



## Another Example: The Cygnus Loop



#### High-Res. X-Ray Spectroscopy (E/AE>100)

- Ejecta dynamics
  - 3D ejecta structures
    - $\rightarrow$  Explosion asymmetries & NS kicks
- Collisionless shock physics
  - T<sub>i</sub>-T<sub>e</sub> equilibration
  - Cosmic-ray acceleration
- Plasma diagnostics
  - Thermodynamic parameters
  - New radiative processes
- Composition measurements
  - Odd-Z/neutron-rich elements



### The Circumstellar Medium in Kepler's SNR



## <u>Summary</u>

- X-ray observations of supernova remnants provide us with important opportunities to test SN nucleosynthetic/explosion models.
- High-resolution X-ray spectroscopy has long been an anticipated discovery space especially for diffuse sources such as SNRs and galaxy clusters.
- The cutting-edge research has been explored by grating spectrometers onboard XMM-Newton and Chandra.
- We do hope Hitomi-2 mission, but it's also important to continue grating spectroscopy.