Physics of Relativistic Radiation Mediated Shocks

Hirotaka Ito RIKEN

Collaborators

Amir Levinson (Tel Aviv Univ), Shigehiro Nagataki (RIKEN)

@ RIKEN-RESCEU joint seminar 2015 /10/3

Plan of this talk

Introduction

-Brief overview of Radiation Mediated Shocks (RMS)

Non-relativistic and Relativistic RMS

Application to GRBs

- Motivation for the application
- New method for RRMS using Monte-Carlo
- Results and current status

Summary

Radiation Mediated Shocks (RMS)

- downstream energy dominated by radiation
- upstream plasma approaching the shock is decelerated by scattering of counter streaming photons

Under which conditions a RMS forms ? Weaver 1976

(I) Radiation dominance downstream: $aT_d^4 > n_d kT_d$

from jump conditions: $n_u m_p c^2 \beta_u^2 \approx a T_d^4$

$$\Rightarrow |\beta_{\rm u} > 4 \times 10^{-5} \, (n_{\rm u} \, / 10^{15} \, {\rm cm}^{-3})^{1/6}$$

(II) Photon trapping at shock region

Diffusion time $t_D \approx$ shock crossing time t_{sh}

$$\Rightarrow |\tau >> \tau_{dec} \sim 1/\beta_u$$

Relevant Astrophysical Phenomena

Shock breakout from stellar surface (e.g, SN, HN) Shocks in Accretion flows (e.g., AGN, µQSO)

Shocks in Jet (GRBs, AGNs)

Collisionless shocks versus RMS

Non-relativistic .vs. Relativistic

Non-relativistic RMS

- small energy gain: $\Delta \varepsilon / \varepsilon <<1$
- diffusion approximation holds. Used in most early treatments

Zeldovich & Raiser 1967; Weaver 1976; Blandford & Payne 1981;

Relativistic RMS

- photon distribution is anisotropic
- energy gain large: $\Delta \epsilon / \epsilon > 1$ optical depth depends on angle: $\tau \alpha (1 - \beta \cos \theta)$
- copious pair production

Levinson & Bromberg 08; Katz et al. 10; Budnik et al. 10; Beloborodov 2016

Non-relativistic RMS

Jump Condition in strong shock

$$n_{u}\beta_{s} = n_{d}\beta_{d},$$

$$p_{\gamma,d} = n_{u}\beta_{s}(\beta_{s} - \beta_{d})m_{p}c^{2},$$

$$4p_{\gamma,d}\beta_{d} = n_{u}\beta_{s}(\beta_{s}^{2} - \beta_{d}^{2})m_{p}c^{2}/2$$

 $n_{\gamma,\mathrm{eq}} \approx p_{\gamma,d}/T_d$

diffusion approximation significantly reduces the difficulty of problem

Assumption : strong shock ($p_u = 0$), Thomson limit (energy independent scattering) radiation dominant pressure

Conservation

Katz et al. 2010

diffusion approximation significantly reduces the difficulty of problem

Assumption : strong shock ($p_u = 0$), Thomson limit (energy independent scattering) radiation dominant pressure

Katz et al. 2010

Relativistic RMS

Radiation transfer and copious pair productions needs to be solved

Levinson & Bromberg (2008), Beloborodov (2016) Hot up stream photons advected from upstream mediate the shock Up to Lorentz factor Γ=2 Pair creation is not included

Budik et al. (2010)

Cold up stream plasma (no photons)

Photons produced in the downstream mediates the shock

Up to Lorentz factor $\Gamma = 30$

Approximated cross sections for scattering and pair creation

$$\frac{d}{dz_{sh}} T_{sh}^{0z} = 0, \text{ :energy}$$

$$\frac{d}{dz_{sh}} T_{sh}^{zz} = 0, \text{ :momentum}$$

$$n_p = n_{p,u} \frac{\Gamma_u \beta_u}{\Gamma \beta}, \text{ :baryon number}$$

$$\frac{d(\Gamma \beta n_+)}{dz_{sh}} = \frac{Q_+}{c}, \text{ :pair creation, annihilation}$$

$$\mu_{sh} \frac{dI_{v_{sh}}(\mu_{sh})}{dz_{sh}} = \frac{\eta_{sh}(\mu_{sh}, v_{sh}) - I_{v_{sh}}(\mu_{sh})\chi_{sh}(\mu_{sh}, v_{sh}) \text{ :radiation transfer}$$

$$\underset{\text{emission}}{\text{absorption}}$$

Shock width $\Delta_s=0.01(\sigma_T n_u)^{-1}\gamma_u^{-2}$ Optical depth inside shock is dominated by e^{\pm}

Optical depth inside shock is dominated by e^{\pm}

Non-thermal spectrum appears due to bulk Comptonization

Previous studies of RRMS

Levinson & Bromberg (2008), Beloborodov (2016)

photons advected from the upstream is dominant Up to Lorentz factor $\Gamma=2$ Pair creation is not included

```
Budik et al. (2010)
```

Photons produced in the downstream is dominant

Up to Lorentz factor $\Gamma = 30$

Approximated cross sections for scattering and pair creation

Limited range of parameters

Aim of the present study

Construction a fully self-consistent steady solution of RRMS application to GRBs, Shock breakout, etc..

Application to GRBs

RRMS will have significant impact on the emission

RRMS in GRB fireball

Photon rich in upstream ($n_{\gamma}/n_{p} \sim 10^{4} - 10^{5} >>1$)

Photon generation: Bremst. + double Compton

Thermalization depth

Free-free:
$$\tau'_{\rm ff} = 10^5 \Lambda_{\rm ff}^{-1} (n_{u15})^{-1/8} \gamma_u^{3/4}$$

Double Compton: $\tau'_{\rm DC} = 10^6 \Lambda_{\rm DC}^{-1} (n_{u15})^{-1/2} \gamma_u^{-1}$

Thermalization length >> shock width ($\tau \sim$ few)

Photon advection dominant (Photon generation and absorption can be neglected)

Levinson 2012

Method • Model

Assumption

- advection dominated
 - (emission, absorption neglected, only scattering)
- -large photon to proton ratio $(n_{ph} / n_p = 10^4 - 10^5)$

thermal distribution at far up stream

electron has Maxwellian distribution

 $\Gamma_u = 2$

Comparison with Band spectra

Summary

RRMS in photon advection dominated regime is computed

- As in the previous studies we find the deceleration length to be $\Delta \tau \sim 1$
- Strong anisotropy develops near the shock and give rise to highly non-thermal spectrum
- Necessity of subshock for $F_{m,rad} >> F_{m,matt}$
- Possible origin of Band spectrum

Future work

- Parameter survey
- -Implementation of photon production and absorption
- Implementation of magnetic fields